Task 48 - Quality Assurance and Support Measures for Solar Cooling


Task 48 Highlights 2014
February 2015 - PDF 0.13MB
The demand for air-conditioning is rapidly increasing, especially in developing countries. And the potential for solar cooling to meet this demand is immense. The results of past IEA SHC work in this field (most recently, SHC Task 38: Solar Air-Conditioning and Refrigeration) have demonstrated the technology’s potential for building air-conditioning, particularly in sunny regions, and identified work needed to achieve economically competitive systems that provide solid long-term energy performance and reliability.
Task 48 Highlights 2014
Collection of criteria to quantify the quality and cost competitiveness for solar cooling systems
Task 48 - Activity B7
January 2015 - PDF 3.35MB
By: Daniel Neyer, Jacqueline Neyer, Alexander Thür, Roberto Fedrizzi, Alice Vittoriosi, Stephen White, Hilbert Focke
Editor: Daniel Neyer, University of Innsbruck
Publisher: Daniel Mugnier, TECSOL
Subtask B concentrates on developing tools and deliverables permitting to show the level of quality of the solar cooling and heating systems. In order to achieve this goal, procedures (possibly 1 or more if needed) have to be developed extending the quality characteristics from a component level (Subtask A) to a system level.

Starting from 1) on-going work in the IEA Annex 34 and Task 44, the French MéGaPICS and the EMERGENCE projects and former work performed in IEA Task38, 2) suitable analysis procedures classified in standards and 3) work performed at research level, an extension of the procedures will be developed from single stationary tests to a system performance prediction over the whole year (based on standardized and generally accepted conditions).

In B7, a proposal for an appropriate evaluation procedure for the technical and economic performance assessment of large systems is set up and tested with real cases. It delivers the basis for a comparable assessment of the installed plants independently of installation site and the specific boundary conditions. Beside, a reflection will be carried out on minimum
economical ratios to estimate the competitiveness of solar cooling against concurrent technologies.

This activity will give an input and will be carried out in close collaboration with activities B1 (System/Subsystem characterization & field performance assessment) and C2 (Methodology for performance assessment, rating and benchmarking).

This activity is to be carried out to survey the available procedures that could be adapted to solar cooling systems quality assessment.
1. A collection and review of existing key figures to quantify quality and cost will be performed but also the specific tools to calculate them will be reviewed.
2. Define the crucial key figures for large scale plants (in cooperation with B1) and find a representation for all of the key figures.
3. Review how benchmarks can be calculated (in cooperation with C2) and define minimum ratios for them.
4. Data acquisition for investment (SHC + reference system) and operating (electricity, etc.) costs has to be done in order to find specific minimum economic ratios.
5. The procedure has to be tested and validated with real installations. Therefore participating companies and institutions will provide monitoring data. Key for the success of this activity is that research institutions are willing to assess the test methods in their laboratories/test sites
Collection of criteria to quantify the quality and cost competitiveness for solar cooling systems
Report for self-detection on monitoring procedure
Task 48 - Activity B6 final report
January 2015 - PDF 5.07MB
By: Dirk Pietruschka, Antoine Dalibard, Ilyes Ben Hassine, Hilbert Focke, Florian Judex and Anita Preisler, Martin Helm, Philip Ohnewein, Antoine Frein
Editor: Dirk Pietruschka, HFT-Stuttgart
Publisher: Daniel Mugnier, TECSOL
Starting from the statement of existing efficient system control (overview achieved in former IEA Task 38), a second generation of control system is needed to be developed which includes self-detection of faults and malfunctioning of the process based on a reduced monitoring. This new powerful functionality will be a key component assuring long term good reliability and performance of the system. This activity includes an update of good practice on the monitoring procedure starting from the experience and procedures developed during IEA SHC Task 38. However, possible system errors in solar cooling systems are diverse and reach from component defects over simple sensor faults to real control problems. Therefore, as a basic for new developments of automated fault detection systems within working group B6 first a categorization of typical system errors has been carried out. For each fault category typical errors have been collected and possible methods for error detection are discussed together with necessary monitoring equipment. In the last part of the document possible implementations of automated fault detection systems within local system controllers and within centralized internet based system observation systems are shown.

For the development of a systematic error detection system, it is required that first of all the possible system errors are collected and sorted in logical error categories. Based on this error detection, methods can be developed for each category and type of error. To reach these goals the following steps were used within working group B6:
- Collection of the different typical system errors which occurred in different demonstration sites
- Characterization of these system errors for the different solar cooling systems
- Development and documentation of possible methods on how the most common system errors can be detected (sensor based and simulation based)
- Definition of minimum required additional sensors for the application of improved fault detection methods
The present document summarizes the work performed by and the information collected within working group B6. This includes experiences made in many different demonstration projects with solar thermal heating and cooling applications. Furthermore, ongoing developments in the field of automated fault detection methods for the different error categories are described. The main aim of the document is to give the reader an overview on the typical system errors and possibilities for a fast detection using automated system observation methods.
Report for self-detection on monitoring procedure
Report on Life cycle analysis
Task 48 - Activities A2-B3 Final report
January 2015 - PDF 9.97MB
By: Marco Beccali, Maurizio Cellura, Sonia Longo, Pietro Finocchiaro, Tim Selke
Editor: Marco Beccali, Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici – Università degli Studi di Palermo
Publisher: Daniel Mugnier, TECSOL
This technical report describes the research activities developed within Subtasks A2 “Life cycle analysis at component level” and B3 “Life cycle analysis at system level”.
Subtask A2 is focused on developing studies to assess the energy and environmental performances of components of solar cooling and heating (SHC) systems. In detail, the Life Cycle Assessment (LCA) approach applied to SHC systems, started by IEA Task 38, is further developed to give a ready to use collection of datasheets allowing estimating the energy and environmental impacts of different SHC systems during their life cycle. The results of the activities developed within Subtask A2 are used to update and complete a database of life cycle inventories for components of SHC systems, already developed within Task 38, to be used for the development of a LCA method tool.
As outcome of Task 38, two machines have been already analysed: PINK PSC-10 (12 kW) with H2O/NH3 and SorTech AG ACS 08 (8 kW) with H2O/Silica Gel. In addition, the energy and environmental impacts of other components of SHC plants have been assessed (e.g. solar thermal collectors, gas boiler, pumps, etc.) starting from data of international LCA databases. As outcome of Subtask A2 of Task 48, the energy and environmental impacts of Pink PC19 Ammonia Chiller and of a Packed Adsorbed Bed have been assessed and the database of life cycle inventories for components of SHC systems, developed within Task 38, has been updated and completed.
Furthermore the LCA database now includes solar PV components (photovoltaic panels, inverter, storage, etc.) giving the possibility to perform analysis on conventional systems which use renewable electricity with or without connection with the grid.
Subtask B aims at developing a user-friendly LCA method tool, useful to calculate the energy and environmental impacts and the payback time indices of different SHC systems and to compare SHC systems and conventional ones. The tool contains the database developed in Subtask A2. An important step of the tool development has been the analysis of international LCA databases to check the LCA data availability for components of the SHC systems and for conventional equipment (pipes, pumps, electric components, photovoltaic panels, etc.).
Within Subtask B, the results of the SolarCoolingOpt project are also illustrated.
Report on Life cycle analysis
Final Report on Pumps Efficiency and Adaptability
Task 48 - A4 activity final report
2015 - PDF 4.03MB
By: Anita Preisler, Daniel Neyer and Alexander Thuer, Romain Siré, Mathias Safarik, Moritz Schubert, Bettina Nocke, Hilbert Focke, Khalid Nagidi, Dirk Petruschka
Editor: Martin Helm, ZAE Bayern
Publisher: Daniel Mugnier
Subtask A concentrates on developing tools and deliverables permitting to show the level of quality of the most critical components of the solar cooling and heating system. These components are mainly the chiller, the heat rejection device, the pumps and the solar collectors.

This technical report focuses on pump efficiency and adaptability to part load conditions in order to minimize the electricity consumption in the hydraulic circuits to obtain a high seasonal energy efficiency ratio in solar cooling systems.
In a first step a selection of market available chillers is evaluated by manufacturer design data concerning temperature differences, flow rates and pressure drops of the external hydraulic circuits and the resulting auxiliary energy electricity consumption to overcome the friction losses in the heat exchangers. While the EER for the chiller solely varies between 11.9 and 77.6 some market available chillers inherently impede good seasonal performance of the overall SHC-System.
Subsequently the different hydraulic circuits of several measured solar cooling systems are analyzed concerning their portion on the overall seasonal electricity consumption. Typically more than 50 % of the auxiliaries are caused by the heat rejection system including cooling water pumps and fan.

A short observation of the portion of pump costs in SHC-Systems confirms the almost negligible impact on overall investment costs and absence of meaningful cost-saving opportunities. Furthermore due to substantially reduced operation costs high-efficiency pumps help to reduce operational costs.

But the deployment of high-efficiency pumps in solar cooling installations does not implicate an efficient pumping automatically. The strong relationship between pump and plant curve demands a proper system design and pump selection.
The way things are an overall SEER of 20 for well-designed small scale solar cooling systems and more seems to be feasible.

Specific Objectives

A state of the art analysis will be conducted on this component in close cooperation with ongoing IEA-SHC Tasks 44 and 45, where these issues are tackled as well. Furthermore the design criterions of market available chillers concerning temperature levels and pressure drop in the heat exchangers are assessed.

In addition to that a performance coefficient called Auxiliary Energy Consumption Ratio (AECR) for the overall hydraulic efficiency is introduced in order to compare the design of various hydraulic circuits of SHC-systems in different capacity classes.
A short theoretical introduction into the rotodynamic pump design helps to avoid planning errors, adverse duty points and simplifies a correct pump selection.

A particular focus will be addressed to the adaptability of the technology to part load production conditions.
Finally an investigation will be done on the best practices for electric consumption reduction for pumping in the different hydraulic loops of a solar cooling system. Best practice will be valorized always including the compromise between efficiency and simplicity
Final Report on Pumps Efficiency and Adaptability
Final report on State of the art on new collectors & characterization for solar cooling
Task48 - Activity A6 Final Report
2015 - PDF 0.42MB
By: Marco Calderoni, Jochen Doel,l Korbinian Kramer, Stephen White, Daniel Mugnier, Uli Jakob, Christian Zahler
Editor: Marco Calderoni
Publisher: Daniel Mugnier
An extensive market overview of existing concentrating collectors has been conducted so as to create easy to consult database (like the existing Solar Key mark one for certified collectors).

This database has been periodically updated during IEA Task 48 work and extended with information relating the certification process of such collectors. Concentrating collectors can nowadays be tested according to several standards (see also Kramer, Mehnert et al. 2011), the most important and enhanced one (also basis for certification according Keymark, SRCC, and others) is (Norm ISO 9806:2013[E]).
New components and approaches, currently under development, have been included into the survey and their use in existing solar cooling plants has been investigated
Final report on State of the art on new collectors & characterization for solar cooling
Final report on State of the art on new collectors & characterization for solar cooling : appendix with Collector database
Task48 - Activity A6 Final Report appendix
2015 - XLS 0.01MB - Posted: 3/22/2015
By: Marco Calderoni
Editor: Marco Calderoni
Publisher: Daniel Mugnier
This document is the appendix of the Final report on State of the art on new collectors & characterization.
It is a database presenting the different collected information on new collector models
Final report on Contracting Models for Solar Thermally Driven Cooling and Heating Systems
Task 48 - C6 activity final report
September 2014 - PDF 1.99MB
By: Moritz Schubert & Sabine Putz, S.O.L.I.D. Gesellschaft für Solarinstallation und Design mbH (s.putz@solid.at)
Editor: Daniel Mugnier
The IEA Task 48 focuses on projects which make solar thermally driven heating and cooling systems at the same time more efficient, reliable and cost competitive. Within the four subtasks, quality procedures on component levels, quality procedures on system levels, market support measures and dissemination and policy advices were elaborated.

This Subtask C6 report´s activity will emphasize contracting models for solar cooling systems. For that purpose, a narrow collaboration was established with ongoing IEA SHC Task 45 on large systems for district heating and cooling systems.

This analysis focuses on details, such as investment models, contracts and other relevant issues with regard to which information on ESCos is limited and dispersed in the EU and worldwide. The work will also deepen our understanding of hurdles which ESCos are faced with and will provide information on ways of overcoming such hurdles in practice.

Solar thermal technology is defined as a technology used to harness energy from the sun for use in a thermal process. There are a wide variety of applications for this technology, including, but not limited to, water/process heating, radiant heating and air conditioning. In each application, solar energy is obtained through a solar collector and transferred to a thermal process. Given the proper conditions and system design, solar thermal technology can provide a reliable and cost-effective energy source in residential, commercial, and industrial applications.

In the field of solar air conditioning, an exponential increase of activities occurred during the last years. Some solar cooling systems are available at small scale, starting at approx. 15 kW. Below this figure a lot of research was done to achieve satisfactory results in regard of the systems´ thermal efficiency. Most solar cooling installations were realized in the scale between 15 kW and 500 kW, being perfectly suitable for all buildings that have a continuous and regular load profile (e.g. public buildings, offices, hospitals…). Since 2011, there are also solar thermal cooling systems with cooling powers beyond 1 Megawatt in operation, like in Singapore and the USA. These systems were the first solar cooling systems based on ESCo financing models.

Solar collectors for air conditioning of buildings are generally also used for other applications, such as space heating and domestic hot water preparation. Latter usually contributes to a reduced payback time of the investment. The technologies of concentrating solar cooling applications as well as the technology of solar flat plate cooling applications have their specific advantages or disadvantages in each case, depending on location and application characteristics. Components have to be carefully selected and developed through an integrated design approach to become a functional system.

ESCos for solar thermal air conditioning are in many cases a competitive energy service concept to execute energy efficiency projects in buildings or production facilities. Further work will be done in the IEA SHC Task 48 and other projects to make this financial service more competitive and superior to other products
Final report on Contracting Models for Solar Thermally Driven Cooling and Heating Systems
Task 48 Highlights 2013
Quality Assurance and Support Measures for Solar Cooling
February 2014 - PDF 0.3MB
The demand for air-conditioning is rapidly increasing, especially in developing countries. And the potential for solar cooling to meet this demand is immense. The results of past IEA SHC work in this field (most recently, SHC Task 38: Solar Air- Conditioning and Refrigeration) have demonstrated the technology’s potential for building air-conditioning, particularly in sunny regions, and identified work needed to achieve economically competitive systems that provide solid long-term energy performance and reliability.
Task 48 Highlights 2013
Final deliverable report on Heat Rejection Systems for solar cooling
January 2014 - PDF 3.63MB
By: Roberto Fedrizzi, Alice Vittoriosi, Davide Romeli, Matteo D’Antoni, Hannes Fugmann, Björn Nienborg, Khalid Nagidi, Marc Sheldon
Editor: Roberto Fedrizzi
SHC Task 48 Subtask A concentrates on developing tools and deliverables to show the level of quality of the most critical components of the solar cooling and heating system. These components are mainly the chiller, the heat rejection device, the pumps and the solar collectors.
This report gives an overview of existing and novel concepts for heat rejection devices in solar cooling systems and recommendations on which heat rejection measure should be used under different boundary conditions (climate, system concept etc.) while achieving the 2 main objectives:
1) investment & operation costs minimization
2) re-cooling performance and efficiency. For selected components, where it was possible, a performance characterization has been made in partnership with manufacturers.
Final deliverable report on Heat Rejection Systems for solar cooling
Solar Cooling Handbook
A Guide to Solar Assisted Cooling and Dehumidification Processes
January 2014
By: Hans Martin Henning, Mario Motta, Daniel Mugnier
Editor: Hans Martin Henning, Mario Motta, Daniel Mugnier
Publisher: Ambra Verlag
This book in English is the absolute reference on the subject of solar thermal air conditioning. Very detailed, it is the result of the work of Task Group 48 of the IEA SHC program and has more than 350 pages in all aspects of technology: components, the system and its design approach, the economic analysis of technology and finally the feedback of field experience for both small and large systems. All sorption technologies are discussed and each time by scientists from twenty participating countries.
ISBN: 978-3-99043-438-3
Order - 82.00 EUR
Solar Cooling Handbook
Review of relevant international standards rating and incentive schemes
Task48 - Activity C1 Final Report
January 2013 - PDF 1.43MB
By: Daniel Rowe, Dr. Stephen White, Daniel Mugnier and Khalid Nagidi
Editor: Daniel Rowe
A large number of government incentive programmes and industry development programmes have
been instituted in different jurisdictions, to assist the renewable energy and building energy efficiency
industries. These programmes call up procedures for quantifying benefits, rating effectiveness
and achieving robust measurement and verification.
A database of relevant standards, processes and incentives has been created and links to the needs of the solar heating and cooling industry have been analysed.
Review of relevant international standards rating and incentive schemes
Final report Measurement and Verification Procedures
Task 48 C4 Final report
January 2013 - PDF 3.44MB
By: Francois Boudéhenn, Stuart Hands, Stephen White, Christian Zahler & Farah Gammoh
Editor: Francois Boudéhenn
While Measurement & Verification (M&V) procedures (e.g. IPMVP, ASHRAE and FEMP) exist for general energy conservation measures, it is desirable to have a more specific and targeted guide for solar cooling in order to simplify procedures, improve confidence in results and to assist M&V implementation with more detailed guidance. The resulting in-situ and ex-situ measurement procedures have been written up as a document suitable for submission as a draft standard.
The present final deliverable is a monitoring procedure and a draft standard integrating the following aspects:
- Presentation of a generic scheme for solar cooling installations;
- Definition of one (or two maximum) performance indicators, with associated calculation method applied to the generic scheme;
- Prescription of the sensors required (position, technologies, …) in order to obtain the needed information for calculating the performance indicator(s);
- Definition of the analysis method for reporting the performance and quality of the installation.
Final report Measurement and Verification Procedures
Task 48 Highlights 2012
January 2013 - PDF 0.17MB
The demand for air-conditioning is rapidly increasing, especially in developing countries. And the potential for solar cooling to meet this demand is immense. The results of past IEA SHC work in this field (most recently, SHC Task 38: Solar Air-Conditioning and Refrigeration) have demonstrated the technology’s potential for building air-conditioning, particularly in sunny regions, and identified work needed to achieve economically competitive systems that provide solid long-term energy performance and reliability.
Task 48 Highlights 2012
Europe Asia Solar Cooling Gains Traction
January 2012
By: Bärbel Epp
Editor: Solarthermalworld
Publisher: Solarthermalworld
Large Japanese and Chinese companies have recently taken a greater interest in solar cooling. The photo shows an installation by Chinese company Jiangsu Huineng New Energy Technology (Huin), which started supplying solar cooling systems this year. New system kits help drive down costs, although investments in sorption chillers are still higher than for compression chillers. After the Intersolar Europe conference in Munich, Germany, and its dedicated solar cooling session, Uli Jakob, Vice President of the German sorption chiller association Green Chiller, noted: “Solar cooling was one of the highlights of the conference.”

  • PDF 0.03MB
Europe Asia Solar Cooling Gains Traction
Keeping Cool with the Sun
Latest Developments on Solar Cooling and Task 48 Short Presentation
January 2012 - PDF 1.36MB
By: Daniel Mugnier (TECSOL) & Uli Jakob (SOLEM Consulting)
Publisher: International Sustainable Energy Review
Worldwide, the energy consumption required for cold and air conditioning is rising rapidly. Usual electrically driven compressor chillers (split units) have maximum energy consumption in peak-load periods during the summer. In the last few years in Southern Europe this has regularly led to grids working to maximum capacity and blackouts. In recent years, the sales figures of split units with a cooling capacity range of up to 5KW have risen rapidly.

www.internationalsustainableenergy.com
Keeping Cool with the Sun
Task 48 Highlights 2011
January 2012 - PDF 0.48MB
The demand for air-conditioning is rapidly increasing, especially in developing countries. And the potential for solar cooling to meet this demand is immense. The results of past IEA SHC work in this field (most recently, SHC Task 38: Solar Air- Conditioning and Refrigeration) have demonstrated the technology’s potential for building air-conditioning, particularly in sunny regions, and identified work needed to achieve economically competitive systems that provide solid long-term energy performance and reliability.
Task 48 Highlights 2011
IEA SHC Task 48 Flyer
Quality Assurance and Support Measures for Solar Cooling
October 2011 - PDF 1.09MB
By: Task 48
A tremendous increase in the market for air-conditioning can be observed worldwide especially in developing countries. The results of the past IEA SHC Tasks and works on solar cooling (ex : Task 38 Solar Air-Conditioning and Refrigeration) on the one hand showed the great potential of this technology for building air-conditioning, particularly in sunny regions. On the other hand, it has been shown that further work is necessary in order to achieve economically competitive systems and which presents solid long term energy performance and reliability.
IEA SHC Task 48 Flyer