

INFO Sheet A07

Reference System, Germany Conventional Heating System for Single-Family House

Description:	Description of the conventional reference system for domestic hot water preparation and space heating in Germany
Date:	23.03.2018, revised 10.04.2018 ¹
Authors	Stephan Bachmann (ITW Stuttgart), Stephan Fischer (ITW Stuttgart), Bernd
Authors:	Hainer (RHC-Platform)
Download possible at:	http://task54.iea-shc.org/

Introduction

This document describes the conventional reference system for domestic hot water preparation and space heating in Germany. The system is modelled with TRNSYS to calculate the fuel consumption and electric energy needed to provide the required domestic hot water and space heating. Using this result the levelized costs of heating (LCOH) for the conventional reference system for Germany is calculated using Eq. 1 and the reference costs for the investment of the system, installation costs, fuel and electricity costs.

Hydraulic Scheme of the System

Key data	
Heat store volume	150
Location	Germany, Würzburg
Lifetime of system	20 years

Levelized Cost of Heat (LCoH)

LCoHc without VAT	0.112 €/kWh
-------------------	-------------

Reference System, Germany Conventional Heating System for Single-Family House

Details of the System

Location	Germany, Würzburg	
Type of system	Domestic hot water and space heating system	
Load information including		
- Heat demand space heating	9090 kWh/a /1/	
- Tapping profile	EU-tapping profile L (4254 kWh/a) /2/	
- Store heat losses	751 kWh	
- Tapping temperature	55°C according EU tapping profile	
- Average inlet temperature of cold water	10°C	
- Cold water inlet temperature amplitude	0 К	
heat store parameters	TRNSYS-type 340	
Heat store volume	150	
Store inner diameter	0.5 m	
Rel. height of boiler inlet	0.8	
Rel. height of boiler outlet	0.04	
Rel. height of sensor for boiler	0.7	
Set temperature for DHW	57.5 °C +- 2.5 K	
Overall heat loss capacity rate of store	2.71 W/K	
Effective vertical conductivity	1.2 W/(mK)	
Heat transfer capacity rate of HX	$(kA)_{WT} = 82.3 \cdot \dot{m}^{0.185} \cdot 9_m^{0.482} [W/K]$	
Volume HX	61	
Ambient temperature of heat store	15 °C	
Boiler /3/		
Type of auxiliary heating	Gas condensing boiler	
Boiler capacity	19 kW	
Mass flow	1090 kg/h (∆T = 15 K)	
Efficiency factor of boiler	0.9	
Controller		
Electric power of controller	3 W	
Operating hours of controller per year	8760 h	
Electric consumption of controller per year	26.3 kWh	
Electric power of pump	55 W	
Operating hours of pump (hot water + space heat.)	4041 h	
Electric consumption of pump per year	222 kWh	
Investment costs		
Boiler and heat store	4000 € /3/	
Exhaust system	500 € /3/	
Installation	1000 € /3/	
Installation material	1000 € /3/	
Overall investment costs I ₀	6500 € /3/	
Operation costs per year		

Reference System, Germany Conventional Heating System for Single-Family House

Heat demand hot water	5009 kWh/a
Fuel demand hot water	5566 kWh/a
Heat demand space heating	9090 kWh/a /1/
Fuel demand space heating	10100 kWh/a
Fuel demand hot water + space heating E _t	15666 kWh/a
Cost per kWh fuel	0.066 € kWh/a /4/
Fuel costs	1034 €/a
Electricity demand	249 kWh/a
Cost per kWh electric energy	
(demand of 5000 kWh/a) /4/	0.254€
Electricity costs	63 €/a
Maintenance costs	200 €/a /3/
Gas meter	130 €/a /3/
Yearly operation and maintenance cost C _t	1427€
Type of incentives	None
Amount of incentives	0€
Lifetime of system	20 year
Discount rate r	0 %
Inflation rate	0 %
Corporate tax rate TR	0 %
Asset depreciation (year t) DEP _t	0€
Subsidies and incentives (year t) St	0€
Residual value RV	0€
Saved final energy (year t) E _t	0 kWh
Discount rate r	0 %
VAT rate	19 %

Calculation of levelized cost LCoH:

$$LCoH = \frac{I_0 - S_0 + \sum_{t=1}^{T} \frac{C_t (1 - TR) - DEP_t \cdot TR}{(1 + r)^t} - \frac{RV}{(1 + r)^T}}{\sum_{t=1}^{T} \frac{E_t}{(1 + r)^t}}$$
(1)

Where:

LCoH: levelized cost of heat in ϵ/kWh DEL I_0 : initial investment in ϵ RV: S_0 : subsidies and incentives in ϵ E_t : C_t : operation and maintenance costs (year t) in ϵ r: dTR: corporate tax rate in %T: p

 DEP_t : asset depreciation (year t) in \in RV: residual value in \in E_t : saved final energy (year t) in kWh r: discount rate in % T: period of analysis in years

Reference System, Germany Conventional Heating System for Single-Family House

References

[1] EN 12977-2 (2012): "Thermal solar systems and components – Custom built systems – Part 2: Test methods for solar water heaters and combisystems".

[2] COMMISSION DELEGATED REGULATION (EU) No 812/2013, ANNEX VII.

[3] Hafner, B. (2016): "*E-Mail*". Dated 13.06.2016.

[4] Check24 (2016): "Würzburg reference costs". URL: <u>www.check24.com</u> (accessed in Sept. 2016).

[5] Louvet, Y., Fischer, S. et. al. (2017): *"IEA SHC Task 54 Info Sheet A1: Guideline for levelized cost of heat (LCOH) calculations for solar thermal applications"*. URL: <u>http://task54.iea-shc.org/.</u>

[6] Louvet, Y., Fischer, S. et.al. (2017): *"Entwicklung einer Richtlinie für die Wirtschaftlichkeitsberechnung solarthermischer Anlagen: die LCoH Methode"*. Symposium Thermische Solarenergie, Bad Staffelstein.

¹ To avoid confusion with the results of other works ([1], [8], [9]) also using the notion of LCoH for solar thermal systems, new acronyms were introduced in this Info Sheet. As previous studies have considered different assumptions for the definition of the terms of the LCoH equation, it does not make sense to compare the values they obtained with the LCoHs, LCoHc and LCoHo values defined here. A detailed explanation of the differences between the approaches chosen in the framework of IEA-SHC Task 54 and in the Solar Heat Worldwide report [9] can be found in Info Sheet A13 [10].