PROJECT SUMMARY

Housing renovation and new annex with Passive House components

Private owner

SPECIAL FEATURES Ground to water heat pump Nearly doubled living space

ARCHITECT Karin Anton and Walter Unterrainer

OWNER Karin Anton and Sven Støvne

Row house with new annex in Oslo NO

IEA – SHC Task 37 Advanced Housing Renovation with Solar & Conservation

Variante 4.0

After

BACKGROUND

Typical row house in the end of a three unit row, constructed in 1962, with poor insulation and thermal bridges. Two storeys and cellar, about 100 m² heated by electricity and wood stove. The owner family wants to enlarge the living space and on this occasion improve the energy efficiency of the existing building.

SUMMARY OF THE RENOVATION

- Establish an air tight layer
- Additional insulation of the hole building envelope (walls: external on porous concrete north wall and cellar walls; internal on strut frame south wall and neighbouring wall)
- Passive House windows and doors
- New entrance
- New annex in prefabricated wooden elements
- Compact unit for ventilation, heating and DHW with integrated ground to water heat pump
- Heated net floor area included annex: 179 m²

Section: existing row house after renovation (left) and new annex (seen in reverse)

Ground floor redesigned with annex

Existing south-facing facade with wooden panels; same type for the new annex (south-facing)

CONSTRUCTION

Attic construction	U-value: 0.10	W/(m²·K)	
Existing roof + vapour permeable membrane			
Mineral wool insulation		330 mm	
Wooden beams (exist.)/min. wool (repl.)		150 mm	
Wooden panels (existing)		10 mm	
Airtight sheet			
Lathing		20 mm	
Fibrous plaster sheet		<u>18 mm</u>	
Total		528 mm	

Wall construction north U-value: 0.10 W/(m²·K) Wooden panels (replaced) 12 mm Lathing (replaced)/wood fibre or flax 50 mm Airtight sheet Porous concrete brick (existing) 250 mm Plaster (existing) 15 mm Mineral wool 200 mm External plaster 15 mm Total 542 mm

Basement ceiling	U-value: 0.10	W/(m²∙K)
Parquet (existing)		24 mm
Lathing (existing)		40 mm
Wooden beams (existing)/cellulose fibre	200 mm
"Living board" (OSB with	out adhesive)	18 mm
Lathing/cellulose fibre		200 mm
Fibrous plaster sheet		<u>18 mm</u>
Total		500 mm

Existing east-facing gable with plaster; similar solution for the new annex (east- and north-facing)

Existing unit and annex (south, 1st story)

Summary of U-values W/(m²·K)

	Before	After
Attic floor	0.34	0.10
Wall north*	0.66	0.10
Wall south*	0.57	0.10
Basement ceiling	0.33	0.10
Windows	2.6	0.80

The south-facing facade must keep the original appearance. Therefore, the owners decided to use vacuum insulation panels on the inside of the existing stud-frame wall. Additional internal vacuum insulation will also be used on the new ground story north wall in order to save space.

BUILDING SERVICES

A compact unit for ventilation with 85 % heat recovery provides heating and domestic hot water. The remaining heat demand will be covered by a ground to water heat pump supplying a low temperature wall heating system.

RENEWABLE ENERGY USE

Integrated ground to water heat pump. The heat will be collected by a brine heat exchanger with an 80 m deep vertical pipe.

ENERGY PERFORMANCE

Before: measured total delivered energy 150 kWh/m² + wood stove After: calculated demand for space heating* 20 kWh/m² Reduction: Roughly 80 % (space heating) *PHPP

INFORMATION SOURCES

Karin Anton, owner and architect Walter Unterrainer (details and PHPPcalculations)

Brochure authors

Michael Klinski, SINTEF Building and infrastructure michael.klinski@sintef.no

Karin Anton sstoevne@online.no