General Publications


Task 42: Compact Thermal Energy Storage Task 42: Compact Thermal Energy Storage
Collaboration Leads to Groundbreaking Work
May 2016 - PDF 0.68MB
By: Matthias Rommel
For the first time international teams of materials experts and application experts collaborated to tackle together issues confronting thermal energy storage. This one of a kind research platform was created jointly by the IEA Solar Heating and Cooling Programme (IEA SHC) and the IEA Energy Conservation through Energy Storage Programme (IEA ECES).
Position Paper: Compact Thermal Energy Storage: Material Development for System Integration Position Paper: Compact Thermal Energy Storage: Material Development for System Integration
IEA SHC Task 42: Position Paper
August 2015 - PDF 0.2MB
By: IEA SHC Task 42
This position paper explains the potential, the present status of development and the market status of compact thermal energy storages. Its aim is to inform policy makers, decision makers and opinion makers about the technologies and to discuss the technological and non-technological barriers and the actions needed to accelerate the development and market uptake of these very important technologies.
Task 42 Highlights 2013 Task 42 Highlights 2013
Thermal Energy Storage: Material Development for System Integration
February 2014 - PDF 0.2MB
To reach high solar fractions, it is necessary to store heat or cold efficiently for longer periods of time. At this time, there are no cost-effective compact storage technologies available. For high solar fraction systems, hot water stores are expensive and require very large volumes of space. Alternative storage technologies, such as phase change materials (PCMs), sorption materials and thermochemical materials (TCMs) are only available at the laboratory scale, and more R&D is needed before they are available commercially.
Task 42 Highlights 2012
February 2013 - PDF 3.28MB
To reach high solar fractions, it is necessary to store heat or cold efficiently for longer periods of time. At this time, there are no cost-effective compact storage technologies available. For high solar fraction systems, hot water stores are expensive and require very large volumes of space. Alternative storage technologies, such as phase change materials (PCMs), sorption materials and thermochemical materials (TCMs) are only available at the laboratory scale, and more R&D is needed before they are available commercially.