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ABSTRACT: The contribution of power production by Photovoltaic (PV) systems to the electricity supply is 
constantly increasing. An efficient use of the fluctuating solar power production will highly benefit from forecast 
information on the expected power production. This forecast information is necessary for the management of the 
electricity grids and for energy trading.  
This paper presents an approach to predict regional PV power output based on irradiance forecasts provided by the 
European Centre for Medium-Range Weather Forecasts (ECMWF). In the first part of the paper we introduce and 
evaluated different approaches to refine the irradiance forecasts. The second part of the paper addresses the power 
prediction for ensembles of PV systems. Here, in view of the data handling problems associated with the high 
number of individual systems contributing to the total PV generation within a region, the identification of 
representative subsets and representative system characterizations reflecting the power characteristics of the total 
ensemble is discussed. 
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1 INTRODUCTION 
 

Power generation from solar energy systems is highly 
variable due to its dependence on meteorological 
conditions. An efficient use of this fluctuating energy 
source requires reliable forecast information for 
management and operation strategies. Today, wind 
power prediction systems have already shown their 
strong economic impact and improve the integration of 
wind energy into the electricity grid (see e.g. [1]). 
Accordingly, the prediction of solar yields will become 
more and more important for utilities, which have to 
integrate increasing amounts of solar power, especially 
for countries where legislation encourages the 
deployment of solar power plants. The Spanish feed-in 
law already includes incentives for correct predictions of 
solar yields for the next day. In Germany the installed 
photovoltaic (PV) power amounts to more than 3 GW. In 
Bavaria, where a large number of these PV systems is 
installed, the share of solar power injected on power 
grids can reach around 10 % during peak hours on sunny 
days.  

In this paper we present further developments of an 
approach to forecast the hourly regional PV power 
production, presented in [2]. A focus will be on further 
elaboration of the forecast of ensemble power production 
for PV-Systems within sections of the untidy network.  

In addition we address a problem arising when 
aiming on a broad application of the scheme. The 
analysis in [2] was based on ensembles of selected PV 
systems, where all system parameters necessary for 
simulation were given. Under real conditions, the 
knowledge on the power production of all PV systems 
that contribute to a control area of the supply grid is 
necessary. Here, the problem arises that in general no 
detailed information on all PV systems for a control area 
is available. Especially for smaller PV systems that 
largely contribute to the overall power production the 
necessary parameters for PV simulation (coordinates, 

orientation and tilt angle of the systems, characteristics of 
inverter and modules) will hardly be available. Statistical 
methods to select representative systems that adequately 
characterize the actually given ensemble will be 
presented. These investigations are based on a selected 
database of 460 operating PV systems in Germany.      

The next section presents the empirical data sets – for 
both, irradiance and power output - used for model 
improvements and model tests, followed by an 
introduction of the statistical measures used in that 
validation. The subsequent section gives a short 
description of the basic irradiance forecasting scheme, its 
recent refinements and performance. Following, the 
scheme for the derivation of the power output of the PV-
systems is introduced with special focus on the handling 
of incomplete information on the systems. An evaluation 
of the power prediction using this representative system 
model is given, including a detailed analysis of the 
quality of ensemble power prediction. The last section 
addresses the upscaling of the power prediction of a 
subset of systems in order to represent the power 
production of the complete ensemble. 

    
2 GROUND MEASURED DATA 
 
2.1 Irradiance data 

For these investigations, measured irradiance data of 
more than 200 meteorological stations in Germany were 
available, partly operated by the German Weather service 
DWD and partly operated by Meteomedia GmbH. The 
distribution of these stations in Germany is shown in 
Figure 1. The period of evaluation is 1.1.2007 to 
31.10.2007. 
 
2.2 Measurement of power output 

PV power forecasts were evaluated using hourly 
power output data for 460 PV systems with a total 
installed power of about 28 MW, distributed over 
Germany as shown in Figure 2. The evaluation was 



performed for the months April to October of the year 
2007.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1: Distribution of the meteorological stations.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2: Distribution of PV systems. Red dots represent 
the complete data base, blue squares show 11 PV systems 
with complete system information. The green box 
approximates the area of the transmission system 
operator EnBW. 

 
The forecast quality is investigated not only for 

single PV systems but also for ensembles of PV systems, 
as the ensemble production of all PV systems 
contributing to a control area is of interest for the utility 
companies. The accuracy assessment was performed for 
the complete German ensemble and for an area in 
Southern Germany approximating the control area of the 
German transmission system operator EnBW. In this area 
a large number of PV systems is installed. 

3 MEASURES OF MODEL ACCURACY 
 

We use the root mean square error 
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as a main score for the assessment of prediction 
accuracy.  Here, N is the number of data pairs evaluated. 
The variable x is replaced by Iglob for the evaluation of 
the prediction of the global irradiance, for the evaluation 
of the power forecast x is set to PAC/Pnom. The 
normalisation of the alternating current (AC) power 
output PAC to the nominal power Pnom of the PV system 
allows for a better comparison of different PV systems. 

In addition, we use the mean value of the errors: 
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to describe systematic deviations of the forecast. 
The accuracy measures are calculated for hourly 

values. Only hours with daylight (Iglob,i > 0) are 
considered for the calculation of BIAS and RMSE, night 
values with no irradiance are excluded from the 
evaluation.  

Relative values of the error measures (rRMSE, 
rBIAS) are obtained by normalization to the mean ground 
measured irradiance or PV power production of the 
considered period. 
 
4 IRRADIANCE FORECAST 
 
4.1 Basic forecast information 

The scheme to derive predictions of PV power output 
is based on irradiance and temperature forecasts up to 3 
days ahead provided by the European Centre for 
Medium-Range Weather Forecasts (ECMWF). The 
global model run by the ECMWF provides these 
forecasts with a temporal resolution of 3 hours and a 
spatial resolution of 0.25° x 0.25°. [3] provides a 
description of physical process of the implementation of 
the ECMWF model during the evaluation period. 

 
4.2 Refinement of the forecasts  

We have investigated different approaches to derive 
an optimized hourly and site-specific irradiance forecast, 
that are shortly described in the following. A more 
detailed description is given in [4]. 

In a first step, a spatial averaging procedure is 
applied. An analysis of the forecast accuracy in 
dependence on the area of averaging revealed that best 
results are achieved with a region of approx. 100 km x 
100 km.  

For the temporal interpolation two different 
approaches are considered. 
• A very simple approach to derive hourly resolved 

forecast is the linear interpolation of the three 
hourly mean values that are provided by the 
ECMWF (version V1).  

• To better account for the diurnal course of the 
irradiance we combine the forecast data with a clear 
sky model ([5]). The temporal interpolation is 
performed for the clear sky index kt*, characterizing 
the transmission of irradiance through the 
atmosphere and defined as ratio of the global 

 



irradiance Iglob to the modelled irradiance for clear 
sky conditions Iclearsky (version V2).  

 
Figure 3 shows the RMSE and the BIAS over the 

predicted clear sky index kt* for the two different 
versions of temporal interpolation. For situations with no 
or few clouds predicted (kt*≈1) the combination with a 
clear sky model (V2, red line) significantly improves 
forecast quality compared to simple linear interpolation 
(V1, black line). The forecast quality is high for these 
situations with an rRMSE of less than 15 %.  

For cloudy situations a systematic overestimation of 
the irradiance is found with clear sky index values 
between kt*=0.3 and kt* =0.8.  

In order to avoid these systematic deviations, we 
introduce a situation specific bias correction. The BIAS is 
modelled as a function of the clear sky index kt* and the 
solar zenith angle θz. The final version of the forecast 
(version V3) is obtained by subtracting the modelled 
bias(kt*,θz) from the predicted values obtained with 
version V2.  

To allow for independent testing of this adaptation to 
ground data, the data were divided into training and test 
data. The first 15 days of each month form the training 
set used to derive the fit-function, the remaining data 
were used for the evaluation.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Forecast errors (rRMSE and rBIAS) for hourly 
global irradiance Iglob over clear sky index kt* for the 
different forecasting approaches. (V1: linear interpolation 
of Iglob, V2: linear interpolation of kt*, V3: linear 
interpolation of kt* and bias correction). Solid lines 
represent the RMSE and dashed lines show the BIAS.  
 

The systematic overestimation of the irradiance for 
cloudy situations with clear sky index values between 
kt*=0.3 and kt* =0.8 is adjusted with the situations 
specific bias correction also on the test set, as shown in 
Figure 3 (V3, light grey line). Still, the RMSE is high for 
these situations that are often related to variable cloud 
cover.  

 
4.3 Overall evaluation of prediction accuracy  

An overall evaluation of the forecast accuracy for the 
different approaches in dependence on the forecast 
horizon is given in Figure 6, where the  results on the test 
data set are displayed in dependence on the  forecast day. 
Results for the first forecast day integrate forecast 
horizons up to 24 hours, the second forecast day 
integrates forecast horizons from 25 hours to 48 hours, 
and the third day includes forecast horizons from 49 

hours to 72 hours. The upper image shows the results for 
single stations, in the lower image the mean irradiance of 
all stations was evaluated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 4: Relative forecast errors for hourly global 
irradiance Iglob in dependence on the forecast horizon for 
the different forecasting approaches. (V1: linear 
interpolation of Iglob V2: linear interpolation of kt*, V3: 
linear interpolation of kt* and bias correction). Coloured 
bars represent the rRMSE, the respective white bars show 
the rBIAS. Upper image: single station. Lower image: 
ensemble of all stations in Germany. 
 

Best results are achieved with approach V3. While 
for single sites the differences between the three 
approaches are only small, for regional forecasts a 
significant improvement is achieved by correction of 
systematic deviations. All following results and the PV 
power forecasts are derived using approach V3. 

For single sites the rRMSE is 36.9 % for the first 
forecast day, and increases to 46.3 % for the third 
forecast day. Due to spatial averaging effects the forecast 
accuracy for the average irradiance of an ensemble of 
distributed stations is much higher than for a single 
system. The rRMSE for the ensemble of all stations 
amounts to 13.4 % for the first forecast day, for the third 
forecast day the rRMSE increases to 22.5 %. 

To illustrate the forecast quality for single stations 
and ensembles, respective time series of predicted and 
measured irradiance are given in Figure 5. Confidence 
intervals indicate the maximum expected uncertainty for 
a given situation in dependence on the cloud situations 
and solar elevation. The method to derive these situation- 
specific confidence intervals is described and evaluated 
in [4]. 
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Figure 5: Forecast of global irradiance Iglob with 
confidence intervals compared to measured irradiance for 
six days in May 2007 for one site (upper image) and for 
the ensemble of all stations shown in Figure 1 (lower 
image). 
 
5 PREDICITION OF POWER OUTPUT 
 
5.1. PV system model 

From the site-specific, hourly forecasts of the global 
horizontal irradiance, the effective irradiance on the 
module plane of the PV-modules is derived using the 
anisotropic-all-sky model formulated by [6]. Based on 
these values a PV simulation model ([7]) provides the 
power forecasts. This model is based on a 
characterization of the PV-efficiency as function of 
irradiance and module 
temperature:

)]25(1)][ln([),( 321 CTIaIaaTI mPOAPOAmPOAMPP °−−++= αη  (3)  
with: 
Tm= Ta + γ IPOA 
IPOA: irradiance on module plane in W/m2 
Ta: ambient temperature in oC 
Tm: amodule temperature in oC 
a1, a2, a3, α, γ: module specific parameters. 
 

With the efficiency and nominal power of the 
generator (standard test conditions, STC), the DC-output 
of the modules of the generator can be calcualted. Using 
a standard characterization of the ohmic DC-losses, the 
inverter efficiency according to [8], AC-losses and 
reasonable assumptions on miscellaneous other losses [9] 
the forecasted AC power output of a generator is 
determined. The applicability of this modeling scheme 
has been analyzed in [9]. 

 
5.2. Representative system parameters 

In [2] we have presented an evaluation of power 
output prediction using the described PV simulation 
model for a small ensemble of systems with complete 
system description available. The system parameters and 
installations details could be derived from the respective 
data sheets and documentations. 

 In general this information is not available for the 
majority of the systems. In addition, the derivation and 
management of the system specific parameters is 
cumbersome when aiming at the correct representation of 
all systems within a network region. Thus, it would be 
desirable to identify a unique set of parameters for the 
system components (PV-modules, inverters) 
characterising a representative system performance 
(given by its efficiency versus irradiance and 
temperature), aiming at reasonable reflection of the 
ensemble performance.  

A respective analyses is reported in [10]. Using a 
case study involving 11 well described systems, it could 
be shown, that a representative system may be defined by 
a set of parameters reflecting the average values of the 
PV efficiency (see Figure 6) and the average efficiencies 
at 3 part-load levels of the inverters.  

 
Figure 6: Normalized MPP efficiency curves (25°C) for 
a set of modules (blue lines) and the representative 
efficiency curve (red lines) reflecting the average 
efficiency values at non STC-irradiances.  

 
In the same way the average of all temperature 

coefficients could be applied.  
This representative model for the maximum power 

point efficiency is used to forecast the power output for 
the complete ensemble in combination with information 
on the installed power of the single systems and the 
respective irradiance forecasts for the given sites. 

 For the final version of the power forecast, the given 
values of installed power are adjusted with the average 
power output of the systems during the complete period 
of evaluation: 
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The information on the annual power production of the 
single PV systems is available at the utility companies, 
while measurements with hourly resolution usually are 
not performed for the majority of small PV systems.  
 
 



 
5.3. Results of power prediction 

An evaluation of the described procedure to predict 
power output based on the irradiance forecast with 
situation specific bias correction (V3) is given in Fig. 7. 
The Figure shows the rRMSE and rBIAS of the original 
power forecast Ppred,0 (dark green bars), the power 
forecast with adjustment of the installed power Ppred  
(light green bars), and the irradiance forecast (yellow 
bars) in comparison. The evaluation of the irradiance and 
the power forecast is performed using the two different 
data sets introduced in section 2. The respective error 
measures are given for single stations, the average of the 
ensemble approximately covering the area of the utility 
company EnBW in Southern Germany (see Figure 2), 
and the average of the German ensemble. 

 
 
 
 
 
 
 
 
 
 
 
 
 

•  
 
Figure 7: Relative errors of original and scaled power 
output prediction, (Ppred,0 and Ppred) and global irradiance 
forecast Iglob for single systems, an ensemble covering the 
area of EnBW, and the German ensemble (see Figure 2). 
Coloured bars represent the rRMSE, the respective white 
bars show the rBIAS.  

 
Figure 7 shows that the adjustment of the installed 

power to measured mean values, not only reduces the 
rBIAS but also the rRMSE of the power forecast. All 
following results are given for the.power forecast with 
adjustment of the installed power Ppred. 

For single stations the rRMSE of the power forecast 
is dominated by the rRMSE of the irradiance forecast. 
The slightly larger error of the power forecast is mainly 
due to the conversion of the irradiance on the tilted plane 
and due to imperfect PV system description. The 
absolute error of the final version of the power forecast 
amounts to RMSEP = 112 W/kWpeak. 

For the ensemble covering the area of EnBW, with a 
size of approximately 220 km x 220 km, the rRMSE of 
the irradiance forecast is reduced with the error reduction  
factor f=RMSEensemble/RMSEsingle=0.56 and the rRMSE of 
the power forecast is reduced by f=0.61. This 
corresponds to an absolute RMSEP of 63 W/kWpeak.   

For the German ensemble the quality of the 
irradiance forecast is further increasing in comparison to 
the smaller ensemble (f=0.35), while RMSEP = 
52W/kWpeak of the power forecast for the German 
ensemble is only slightly smaller than for the Southern 
German Ensemble (f=0.51). 

This difference in the error reduction factor for 
irradiance and power forecast is analyzed in detail in the 
next section. 

 
 
6 ANALYSIS OF ERROR REDUCTION FOR 
ENSEMBLES OF SYSTEMS 
 

The reduction of prediction errors, when considering 
an ensemble of systems instead of a single system, is 
determined by the characteristics of the ensemble 
(number of systems, area, distribution of systems and 
installed power) and by the cross correlation of forecast 
errors, both aspects are addressed in the following. 
 
6.1. Cross correlation of forecast errors  

A statistical model to estimate the error reduction 
factor for a given ensemble in dependence of the cross 
correlation of forecast errors has been introduced in [11]. 
With decreasing cross correlation of the forecast errors of 
the systems of the ensemble, the accuracy of the 
prediction of the ensemble power output is increasing. 

The correlation coefficient of the forecast errors of 
two systems depends on the distance between the 
systems. This is illustrated in Figure 8, where the 
correlation coefficient of the power prediction errors 
between two systems is displayed over the distance 
between the systems. The dependence of the correlation 
of the forecast errors on the distance of two systems can 
be modelled with an exponential function as proposed in 
[11]. The light green line represents the model curve for 
power forecast errors. For comparison the model curve 
for irradiance forecast errors is also shown (red line).  

 Figure 8 shows that the correlation of errors for the 
power prediction is larger than for the irradiance forecast. 
This partly explains that power prediction errors are not 
reduced as much as irradiance forecast errors for an 
ensemble covering the same area.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Correlation coefficient of forecast errors of 
two systems over the distance between the systems. The 
blue dots represent measured values for the power output 
P, the light green line gives the model curve for P, the 
red line shows the model curve for global irradiance Iglob. 

 
6.2. Regional distribution of sites 

The influence of the regional distribution of sites on 
the quality of ensemble power prediction was 
investigated using subsets of 50 systems. Two different 
cases were considered. In the first case the regional 
distribution of stations in the subsets should reflect the 
regional distribution of the complete ensemble, as a 
second case we investigated subsets with an almost 
uniform distribution all over Germany. For both cases 50 



subsets with 50 stations were selected and the mean 
RMSE for these subsets was calculated. For the first case 
a random selection of the systems was performed. For the 
second case, in order to achieve an approximation to a 
uniform distribution, the complete area of evaluation was 
divided to five regions of equal size and ten systems were 
selected randomly for each region.  

For the subsets representing the distribution of the 
complete ensemble with a large share of systems in the 
South of Germany (see Figure 2) the average RMSE 
amounts to 60 W/kWpeak. For the subsets with uniform 
distribution a smaller average RMSE of 50 W/kWpeak is 
found.  

These results demonstrate that the regional 
distribution of stations has a significant influence on the 
quality of the power prediction for an ensemble of 
stations. The different distributions of irradiance 
measurement stations and PV systems according to 
Figure 1 and Figure 2 contribute to the difference in the 
error reduction factors for irradiance and power forecast. 

A comparison of the regional distribution of the PV 
systems in the evaluation data base to the real 
distribution of PV systems in Germany based on data 
published in [Photon, 2007] revealed, that in the 
evaluation data set the installed power in Northern 
Germany is strongly underrepresented. Hence, for an 
ensemble reflecting the real distribution of PV systems in 
Germany, a further improvement compared to the results 
for the present evaluation set can be expected. 
 
7 UPSCALING  

 
 In this section the upscaling of the power output 

prediction of a subset of systems in order to represent the 
power production of the complete ensemble is addressed. 
The representative subset should reflect the distribution 
of systems and their orientation (azimuth orientation and 
tilt angle of generator) and show a similar response to the 
irradiance conditions as the full ensemble. 

In a first step, we investigated the RMSE of the 
ensemble power prediction for a subset in dependence on 
the number of systems. Figure 9 shows the average 
RMSE (red line with circles) for 50 randomly selected 
subsets together with the corresponding standard 
deviation (red bars) over the number of systems that 
contribute to a subset. A very fast decrease of forecast 
errors can be observed for up to ten systems. The RMSE 
is further decreasing with the number of systems. For 
about 150 systems the accuracy for the subset 
approximates the accuracy of the full ensemble (black 
dashed line).  

In a second step, the forecast of the power output of 
the subset is compared to the measured power of the 
complete ensemble (upscaling). The power output values 
are normalized to the installed power of the ensemble 
(see section 3), which allows for a direct comparison of 
the power prediction for the subsets to the measured 
power of the complete ensembles. The respective mean 
RMSE values and their standard deviations are displayed 
in blue colour in Figure 9. The average RMSE values are 
very similar to the RMSE values when comparing the 
forecast for the subsets to the measured power output for 
the respective subset (red line with circles). With a subset 
of a least 150 systems the power output of the complete 
ensemble of 500 systems can be predicted with a good 

approximation to the accuracy that is obtained for the 
forecasts based on the complete ensemble.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Average RMSE for 50 randomly selected 
subsets together with the corresponding standard 
deviation over the number of stations. Red: comparison 
of predicted and measured power of the subset. Blue: 
comparison of predicted power of the subset to measured 
power of the complete ensemble. Black squares 
correspond to uniform regional distribution of the 
systems of the subset. 
 

In addition to the average RMSE values for randomly 
selected subsets, the average RMSE values for subsets 
with uniform distribution of the systems are given in 
Figure 9. While the power prediction for the subset with 
uniform regional distribution (black-red squares) shows 
higher accuracy than for the randomly selected subsets 
(see also section 7.2), the RMSE is increasing, when 
evaluating the power output prediction for the subset 
against the measured power of the complete ensemble 
(black-blue squares). This shows the importance of a 
correct representation of the regional distribution for the 
upscaling approach. 
 
8 CONCLUSIONS 
 

We have presented and compared several approaches 
to derive hourly site-specific irradiance forecasts from 
three-hourly ECMWF forecasts as a basis to predict PV 
power output. We have shown that a considerable 
improvement of the quality for regional irradiance 
forecasts can be achieved by correction of 
systematic deviations of the original forecasts.  

Furthermore, we have proposed and evaluated a first 
approach to predict the PV power output of a large 
ensemble of systems applying a representative system 
model. The evaluation of the PV power prediction 
scheme resulted in an RMSE of 0.11 kW/kWpeak for 
single systems. For the ensemble power prediction for an 
area of 220 km x 220 km an RMSE of 0.06 kW/kWpeak 
was found, and for a larger ensemble covering the area of 
Germany the RMSE of 0.05 kW/kWpeak. This accuracy is 
in the same range as the accuracy of operational wind 
power predictions systems that are already applied to 
improve the integration of wind energy into the 
electricity grid. 
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