

How Recent Advances in Solar Resource Assessment Support Large-Scale Solar Development

Plenary Speech by Dr. David Renné IEA/SHC Task 46 Operating Agent

SHC 2014 Beijing, PRC

17 October 2014

MATIONAL RENEWABLE ENERGY LABORATORY

- The climate challenge
- Solar Energy as a Mitigation Strategy
 - Current status
 - Future trends and opportunities
- Integrating solar into the grid
- Summary points

- ~2000 GtCO₂ emitted since 1750 (~1/2 of this in past 40 years); leading to +0.85 °C since 1850
- To stabilize climate change at today's level by 2100, cumulative CO₂ emissions must not exceed ~1000 GtCO₂ between now and 2100
- However...emission rates are *increasing* (currently ~30 GtCO₂/yr)
- ...and current carbon-burning infrastructure alone can approach 1000 $GtCO_2$ in next 40 years.

Which Scenario?

Source: IPCC, 2014 (AR5)

RCP 2.6 is our best opportunity to limit global warming to <2.0 °C in the long term

Which Scenario?

RE Projection Scenarios

Source: REN 21 Global Futures Report 2013, by Eric Martinot

Solar Water Heating capacity estimates: 326 GW_{th}

CSP capacity estimates, 2013: 3.4 GW (up from 1.1 GW in 2010)

REN-21 2014 Global Status Report; photo credits NREL Pix

Global PV Capacity Growth

Source: REN-21 2014 Global Status Report

For first time since 2003 Asia exceeded Europe with capacity additions; China was the lead

Source: EPIA 2014

PV Capacity and Additions: Top 10 Countries

Source: REN-21 2014 Global Status Report

PV Capacity Projections to 2018

Projections are 321 to 430 GW Cumulative PV by 2018

Source: EPIA 2014

IEA's PV Roadmap Projections

Source: IEA PV Roadmap, 2010 and 2014

2010: ~11% of total electricity supply by 2050

2014: ~16% of total electricity supply by 2050

Note: Shift from residential to large-scale PV over time

- A *transformation* of our energy systems
- Increased system flexibility
- More reliance on distributed generation, smart grids, microgrids
- Lower energy intensity per capita
- Ability to incorporate high penetrations of Variable Renewable Energy (VRE)
 CENTRAL VS. DISTRIBUTED GENERATION

The "Duck" Curve

Energy Storage can Shift Time of Use of RE

Thermal Storage Uncouples Electricity Generation from Solar Energy Collection

Source: IEA Solar Thermal Roadmap, 2014

Solar Resource Assessment and Forecasting

- Successor to Task 36 "Solar Resource Knowledge Management"
- Four Focus areas:
 - Grid Integration of VRE
 - Improved Data Collection and Assimilation
 - Solar Forecasting
 - Solar Model Improvements
- Task Deliverables: Best Practices in Data Collection, Site Adaptation, and Forecasting

Forecasting Time Scale	Source of information/ method
Sub-hourly	 Ground based observations Radiometers Total Sky Imagers Visual Observations
1 – 6 hours	 Cloud motion vectors (CMV) from satellites Numerical Weather Prediction (NWP) Models: Global (ECMWF, GFS, NDFD) Regional: (NAM, GEM, RUC) Mesoscale: (WRF)
1 - 7 days	 NWP output NWP plus Mesoscale Machine Learning Techniques

Cloud information from Sky Imagers

From the HOPE Campaign, Jülich Germany. 9 April 2013, 12:59 UTC

Source: Madhaven, et al., 2014, University of Oldenburg, Germany

Cloud motion at 1-minute intervals interpolated from 2 satellite images taken 30 minutes apart

Source: Clean Power Research

Solar Forecasting in Germany

Source: Lorenz, et al., 2014 (University of Oldenburg, Germany)

What about TMY Data?

Source: Danish Technical University

TMY = Typical Meteorological Year

- RE will become a major energy source (and ultimately the only energy source) in this century
- Energy intensity at individual and community level must decrease
- Our method of delivering energy services is going through a transformation, and even a revolution
- Strategies to address variable renewable energy supply must include resource forecasting and energy storage
- With proper grid management, RE can supply both base and peak load energy

Dr. David Renné drenne@mac.com

NATIONAL DENEWABLE ENERGY LABORATOR