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Abstract 
Traditional façade characterisation metrics such as U-value and g-value are of limited value in the design process of buildings with 
adaptive façades. This issue is particularly important for adaptive façade components that have the capability of controlling thermal 
energy storage in the construction thermal mass. Building performance simulations can help to analyse the performance of buildings 
with adaptive façades, but such studies usually only provide information about the energy and comfort performance at room level. 
Consequently, there is a need for development and testing of new façade-level performance metrics that can be used to compare the 
performance of different adaptive façade components. This paper presents experiences and lessons learned from four European R&D 
projects that have introduced novel metrics to capture the dynamic performance of adaptive opaque façades. Characteristics of the 
different metrics are described, and their similarities and differences are compared and contrasted. The paper highlights the main 
benefits of metrics that can capture dynamic effects, and concludes by providing directions for future work.
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1 INTRODUCTION

Adaptive façades have the ability to adjust their configuration or physical properties in response 

to changes in interior and exterior boundary conditions. When this adaptation is controlled 

in an effective way, such façades offer a remarkable potential for comfort improvements 

and energy savings (Loonen, Trčka, Cóstola, & Hensen, 2013). Typical examples of adaptive 

façades include switchable windows (Favoino, Overend, & Jin, 2015), dynamic insulation (Jin, 

Favoino, & Overend, 2017) (Favoino, Jin & Overend, 2017) and movable exterior shading screens 

(Fiorito et al., 2016).

During the design phase of buildings with adaptive façades, there is a need for quantitative 

information about the performance of such systems (Loonen, Singaravel, Trčka, Cóstola, & Hensen, 

2014). This information can support the decision-making process and the comparison with 

alternative advanced and traditional façade systems. One way to obtain this information is with 

the help of building performance simulations. In this way, performance can be expressed in terms 

of indicators that are of direct interest to the relevant stakeholders (e.g. life-cycle costs or comfort 

exceedance hours), while accounting for dynamic operational strategies of the adaptive façade 

(Loonen, Favoino, Hensen, & Overend, 2017). It must be realised, however, that such simulations 

require detailed inputs about the characteristics of the building, the façade system, and the way 

it will be used. This type of information is generally not available in the earlier design stages. 

Moreover, the availability of component models for innovative adaptive façade systems tends to be 

scarce, while a high level of user expertise is required to get meaningful simulation results. As a 

consequence, there is a need for simpler methods and metrics to characterise the performance of 

adaptive façade components. 

FIG. 1 Linear regression analysis to identify the U-value in a conventional and in a PCM glazing unit (Goia et al. 2014)
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Recent research has highlighted how conventional performance metrics, such as the U-value, 

cannot be used to describe the performance of adaptive systems, as the thermophysical behaviour 

is too far from the assumptions under which this metric can be measured or calculated. This 

fact can be seen in Fig. 1, where a comparison between conventional glazing and PCM glazing is 

shown, as far as the assessment of the in-situ U-value (Goia Perino, & Serra, 2014) is concerned. 

The graphs in Fig. 1 represent the relationship between the indoor – outdoor temperature difference 

(ƍ
out,air 

- ƍ
out,in

) and the heat flux through the glazed component, for the glazing with an air cavity 

(traditional double glazing unit with clear glass, DGU_CG) and for the PCM filled glazing (DGU_PCM). 

While a conventional glazing unit (DGU_CG) can be characterised in terms of U-value, which is 

quantified by the slope of the linear regression line (y=2.25x, thus U-value = 2.25 W/m2K), the inertial 

effect in PCM glazing (DGU_PCM) prevents the assessment of a U-value being carried out, as it is 

impossible to identify a linear relationship between temperature difference and heat flux through 

the glazing (U-value). 

Other studies have highlighted the importance of performance metrics for capturing the 

performance of transparent ventilated façades. Di Maio and Van Paassen (2001) used, for the first 

time, the concept of pre-heating efficiency (η
PH

) for transparent double skin façades using the air 

cavity to pre-heat the supply ventilation air. Corgnati, Perino, and Serra (2007) developed these 

concepts further, adopting the dynamic insulation efficiency (ε) for transparent double skin façades, 

using the cavity air to remove solar loads transmitted through the glazing (outdoor air curtain 

ventilation strategy). The common characteristics of these metrics are:

 – both are developed to measure the additional amount of solar radiation either added or removed by 

means of the ventilation mechanisms of the façade or room behind it;

 – they are normalised with respect to the boundary conditions (temperatures, amount of solar 

radiation, solar geometry etc.), so that they are, to a large extent, independent from them;

 – they are based on hourly or daily data, which are averaged over a longer period;

 – they are not derived from physical parameters (based on a physical model), but are derived from time 

series of data (experimental or simulated), of the order of months or years.

 – the thermal storage mechanisms and thermal mass is not accounted for, and these metrics are 

therefore applicable only to light-weight façade components (typically transparent façades).   

2 METHODOLOGY

This paper presents experiences and lessons learned from four adaptive façade R&D projects 

carried out at different institutes across Europe, with particular emphasis on the identification and 

application of new performance metrics for adaptive façades. The following four R&D projects are 

presented: (i) the ACTive, RESponsive and Solar façade module (ACTRESS) at Politecnico di Torino; (ii) 

the SMARTglass project at Politecnico di Torino; (iii) the ADAPTIWALL multi-functional lightweight 

façade panel at INES CEA and EURAC, and (iv) the Active Insulation Project at TU Eindhoven. 

In particular, the paper first presents specific performance metrics devised into the four different 

adaptive façade projects. This is organised into four different sections (one per project) in which 

a first description of the adaptive façade system is given, the definitions and characteristics of 

all metrics are provided, together with the quantification of the specific metric for the related 

adaptive façade system. Finally, similarities and differences between the different metrics are 

contrasted, identifying their main benefits, the specific adaptive technology they refer to, and how 
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they can capture the dynamic effect of the adaptive system. The paper concludes by providing 

directions for future work.

3 PERFORMANCE METRICS FOR THE ACTRESS PROJECT

The ACTRESS (ACTive RESponsible and Solar) Multifunctional Façade Module (MFM) was developed 

in the context of an Italian national research project (PRIN) between 2008 and 2010. It is made of 

two different sub-systems: an Opaque Sub-Module (OSM) and a Transparent Sub-Module (TSM). 

For the purposes of this paper, only the OSM is discussed (as the TSM metrics are not relevant 

for this paper). A comprehensive description of the MFM and of its performance can be found in 

Favoino, Goia, Perino, and Serra (2013) and (2016). The OSM (Fig. 2) is made up of the following 

(from outside to inside):

 – an external skin is formed by an amorphous silicon PV panel (aSi PV, η pv = 6%, g-value pv = 0.27);

 – 120mm ventilated air cavity (floor to floor height) which can be operated in either thermal buffer, 

supply air, outdoor air curtain and exhaust air modes (with natural, hybrid and mechanical 

ventilation) according to the boundary conditions.

 – an opaque sandwich wall composed of: a double VIP (Vacuum Insulation Panel) layer (R=10 

m^2K/W); two layers of Phase Change Materials (PCMs) directly facing the indoor environment with 

melting temperatures of 27 °C and 23 °C, respectively; an electric heated foil directly powered by 

the aSi PV panels, in between the two PCM layers, thus allowing for active thermal energy storage 

(activation of the PCM on-on-demand); an internal and external gypsum board (one facing the 

ventilated cavity and one the internal environment). This system is effectively a solar LHTES (Latent 

Heat Thermal Energy Storage System).

The design of the OSM aimed to minimise the heat losses and gains (by conduction and ventilation) 

by means of the opaque cavity ventilation and the VIP panels, and by storing the solar energy directly 

into the PCM layers to be supplied to the indoor environment when needed. 
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FIG. 2 Front view of the ACTRESS prototype (left) and cross sections and energy balance of the Solar LHTES (right)

To characterise the performance of this ventilated solar LHTES, alongside with the measured 

U-value of the system (of 0.1 W/m2K1, in line with the calculation from physical parameters of the 

VIP, gypsum, and PCM layers), different performance metrics were used. These are presented in 

the following sections: 3.1.1 and 3.1.2, which are adapted from the above mentioned metrics for 

transparent façades, and 3.1.3 and 3.2.1 to .3, which are newly developed.

 3.1 PERFORMANCE METRICS FOR THE VENTILATED CAVITY

 3.1.1 Dynamic insulation efficiency – ε [-]

Dynamic insulation efficiency (ε [-], Corgnati et al., 2007) ε is defined as the capability of the opaque 

module to reduce the entering heat fluxes (due to temperature differential and solar radiation) by 

means of the façade ventilation (between 0 and 1), when operating in Outdoor Air Curtain (OAC) 

mode, i.e. mainly in mid-season and summer. According to the boundary conditions of the system 

considered, it can be defined for the Opaque Ventilated Cavity only (OVF) or for the whole OSM 

(including the PCM). For the specific case (Fig. 3), with the low G-value of the PV layer, the summer 

mechanical ventilation and the use of the PCM, the OSM is, on average (50% cumulative frequency), 

adiabatic (completely eliminating the heat gains or reversing them, when ε > 1).

𝜀𝜀 =  !!"#$
!!"#

 [-]                   

 
Equation 1

1 The measured U-value resulted from a long-term measurement (Favoino et al. 2013).
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 3.1.2 Pre-heating efficiency – η 
PH

 [-]

Pre-heating efficiency (η 
PH

 [-], DiMaio & Van Paassen, 2001) represents the ratio between the quantity 

of energy (enthalpy) in the air that flows inside the façade and the energy (enthalpy) necessary to 

pre-heat the ventilation air (it has a value between 0 and 1). In the specific case (Fig. 4), during the 

day (solar radiation I higher than 1), the heat losses through the air supplied to the indoor space 

are halved (approx. 0.50) on average (50% cumulative frequency); when also considering night-time 

operation, these heat losses are reduced only by 20%.   

 

 

    

η
−

=
−

exh inlet
PH

out in

T T
T T     [-]  

Equation 2

FIG. 3 Dynamic insulation efficiency of the OSM (Favoino et al. 
2016)

FIG. 4 Preheating efficiency of the OSM (Favoino et al. 2016)

 3.1.3 Thermal buffer efficiency – η 
TB

 [-]

Thermal buffer efficiency (η 
TB

 [-]) is a novel parameter (Favoino et al., 2013) similar to the so-called 

adjustment factor b
tr
 defined in the ISO 13789:2007 Standard (EN ISO, 2007), used when operating 

in Thermal Buffer (TB) mode, defining a reduction factor (from -1 to 1) for the heat losses due to 

increased temperature of the cavity. In the specific case (Fig. 5), when adopting a thermal buffer 

strategy, the heat losses by conduction of the OSM can be reduced, on average (50% cumulated 

frequency) by 25% during the day (I higher than 1), or by only 5% when night-time operations 

are also considered. Negative values represent higher heat losses, due to radiation, to the 

night-sky during winter.  

 

 

    

η
−

=
−

out cav
TB

out in

T T
T T

 

[-]   

 
Equation 3 
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FIG. 5 Thermal buffer efficiency of the OSM (Favoino et al. 
2016)

FIG. 6 Efficiency of the LHTES (Favoino et al. 2016)

As far as the LHTES (e.g. PCM layers) is concerned, the analysis was carried out by analysing the 

energies accumulated/transmitted through the opaque sub module, by means of a first principle 

analysis of the daily energies exchanged across the solar LHTES system (Q
PV

, Q
IN

 and Q
VIP

, as defined 

in Fig. 2). Due to the dynamics of the solar LHTES, particular attention should be paid to the starting 

time of the daily first principle analysis. Moreover, these are not calculated as hourly or sub-hourly 

values, but as daily values, therefore longer duration testing is needed to elaborate on results in 

metrics that are independent from outdoor boundary conditions.

 3.2 PERFORMANCE METRICS FOR THE LATENT HEAT 
THERMAL ENERGY STORAGE SYSTEM

 3.2.1 Utilisation factor of the solar LHTES system– η 
LHTES

Utilisation factor of the solar LHTES system ( η 
LHTES

 [-]) is defined as the ratio between the energy stored 

in the PCM layer and the solar energy converted by the PV panels, over a daily period. It gives 

straightforward information about the fraction of converted thermal energy that is stored in the 

latent energy buffer, but it does not provide any information about the fraction of the converted 

energy that is actually used as a positive contribution to the room heating. In fact, only part of the 

heat is released towards the indoor environment after it is stored in the PCM or directly, while the 

remaining part is lost towards the ventilated air cavity of the OSM. The η 
LHTES

 (value between 0 and 1) 

measures the efficiency of storing solar converted electrical energy into the specific latent heat 

thermal energy storage system, independently of its position or integration in the building.

 

 

 

𝜂𝜂!"#$% =
!!"#$%! ∙!"! !"! !

!!"

!!"∙!"
! !"!!
! !"

 [-]                                          

 Equation 4 
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 3.2.2 Utilisation factor of the usable energy of the LHTES– η 
LHTES-Usable

 [-]

Utilisation factor of the usable energy of the LHTES (η 
LHTES-Usable

 [-]) is defined by the ratio between the 

energy delivered towards the indoor environment by the LHTES during its discharge phase and the 

energy stored in the LHTES over a daily period (ini and end subscripts indicate the start and the end 

of the discharge phase of the PCM in the LHTES). This efficiency describes the amount of energy that 

can be delivered to the indoor environment in order to reduce space heating compared to the total 

energy stored in the LHTES. The complementary part of this energy that which is lost from the 

LHTES. The η 
LHTES-usable

 measures the efficiency of integrating the latent heat storage into the building 

envelope, and specifically into the OSM of the ACTRESS MFM.  

 

 

η!"#$%!!"#$%& =
!!"#$%! ∙!"!"#

!"!

!!"#$%! ∙!"! !"! !
!!"

  [-]                                       

 
Equation 5

 3.2.3 Utilisation factor of the OSM system– η 
OSM

 [-]

Utilisation factor of the OSM system( η 
OSM

 [-]) is defined as the ratio between the thermal 

energy released by the LHTES towards the indoor environment over a single day, and the PV- 

converted energy, over the same time interval. It measures the efficiency of delivering the solar 

converted electric energy towards the indoor environment, after being stored in the designed latent 

heat thermal energy storage integrated into the building envelope, for space heating purposes. This 

efficiency is higher than η 
LHTES-Usable 

as, in addition to the energy converted by the PV, it also includes 

the thermal energy flowing to the LHTES from the air cavity. Meanwhile, the difference between h
LHTES

 

and h
OSM 

gives a measure of the energy dissipated by the LHTES towards the air cavity. 

 

 

 

η!"# =
!!"#! ∙!!! !"! !

!"#

!!"∙!!
! !"!!
! !"

  [-]                                           

 
Equation 6

In the specific case (Fig. 6), on average (50% of cumulated frequency), on a daily basis, about 80% 

of the solar energy converted by the PV is stored in the latent heat storage (η 
LHTES

), but only 30% 

is delivered to the indoor environment, as most of the converted solar energy is lost to the air 

cavity (despite the presence of the VIP insulation). This is due to the much higher temperature 

differential towards the LHTES and the cavity, as compared to that between the LHTES and the 

indoor environment. 
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The results show that the performance on the OSM cannot be described only by standardised metrics 

such as the U-value. In fact, the specific measured U-value corresponds to the calculated one, 

although the heat losses and gains through conduction and convection could be much less than the 

calculated ones by means of U-value, due to the different operating modes of the system. In addition 

to these performance metrics, metrics that consider the daily total energy balance of the façade 

system are also considered, although, for brevity, these are not presented here for the ACTRESS 

project, but will be discussed in the context of the following projects. 

4 PERFORMANCE METRICS IN THE SMARTGLASS PROJECT 

The SMARTglass project, funded by Regione Piemonte in 2010 (Goia et al. 2014), was part of the 

activities of the Cost Action 1403 Adaptive Façades Network. The experimental campaigns, which 

were carried out in two phases at the TWINS outdoor test facility in Politecnico di Torino, Italy, 

involved the following technologies (Fig. 7):

 – DGU: a reference double glazing unit (clear glass panes) with air;

 – DGU_PCM: a double glazed unit (clear glass panes) with cavity filled with PCM (paraffin wax) 

 – TGU : a reference low-e triple glazing unit with 90% argon; 

 – TGU_TT : the TGU with an adjacent thermotropic layer (switch in the optical properties in the range 

28 °C to 34 °C (Bianco, Goia, Serra, & Zinzi, 2015)) on the outer side;

 – TGU_TT+PCM(IN): the TGU with an adjacent thermotropic layer on the outer side and its inner cavity 

filled with PCM (paraffin wax with a melting temperature range between 33 °C and 37 °C); 

 – TGU_TT+PCM(OUT): the TGU with an adjacent thermotropic layer on the outer side and its outer 

cavity filled with the PCM. 

A comprehensive description of the experimental test rig, materials, technologies and their 

performance during the different phases was presented in Goia et al., (2014) (Phase 1) and Bianco, 

Cascone, Goia, Perino, and Serra (2017a) and (2017b) (Phase 2).
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FIG. 7 Test cell and scheme of the SMARTglass technologies (Phase 2: Bianco et al., 2017b)

Compared to standard glazing, a PCM-based glazed unit (either double or triple pane unit) seeks 

to ameliorate the indoor surface temperature’s fluctuation and reduce energy gains and losses. 

Through the interaction with the incident solar radiation, the PCM layer in these systems acts as a 

storage medium and as a solar shading device. When combined with a thermotropic layer (TGU_

TT+PCM), a higher degree of control over the system is intended, as the thermotropic layer acts as a 

switchable shading system capable of regulating the phase change of the PCM. 

In order to characterise the performance of these technologies, alongside the analysis of the hourly 

profiles of various physical properties (outdoor surface temperature, heat flux, transmitted solar 

irradiance, solar transmittance and visible transmittance), an equivalent solar factor was also 

evaluated from the in-situ measurements, calculated from daily measurement. 

A full description of the methodology to evaluate the G-value on a daily basis from non-calorimetric 

measurement is given in Goia and Serra, (2018). The measurement of the equivalent G-value 

adopted an innovative measurement method enabling estimates of this metric based on the daily 

energy balance of the façade (Favoino et al., 2016; Bianco et al., 2017a), although a low accuracy 

of this measurement was achieved in this case mainly due to the variation in diurnal behaviour 

of the PCM-filled glazing systems, due to the strong influence of varying boundary conditions 

(temperatures and solar radiation) (Bianco et al. 2017a).

Total daily energies and long-term total energies (for a certain number of consecutive days for each 

season) were additionally analysed.
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 4.1 FAÇADE ENERGY BALANCE PERFORMANCE METRICS

 4.1.1 Total daily energy – E24,tot [Wh/m2]

Total daily energy (E
24,tot

 [Wh/m2], Bianco et al., 2017a; Goia et al., 2014) is defined as the integral over 

24 hours of the total heat flux (sum of the indoor surface heat flux and of the transmitted solar 

irradiance) crossing the glazing system. To remove the effect of the solar irradiation of the previous 

day, the integration limits for its calculation were chosen from 07:00 to 07:00 + 1day during winter 

and from 05:00 to 05:00 + 1day during summer. This metric is most suited to comparing the 

performance of components that are tested under the same boundary conditions, whereas a proper 

selection of the days to analyse is required when comparing data that were not simultaneously 

measured. In the specific case, similar values of E
24,tot

 for the reference technology ensured 

comparability among different datasets (Fig. 8). A data selection methodology for this purpose is 

detailed in Bianco et al. (2017a). The daily total energy can provide concise information for comparing 

the performance of several technologies, but additional information is needed to understand the 

dynamics of the system. As positive and negative energies are summed, an E
24,tot

 e.g. close to zero 

does not imply constant adiabatic conditions throughout the day, but only that the energy losses are 

balanced by the energy gains.

 

 

 

𝐸𝐸!",!"! = 𝑞𝑞!"#$ + 𝐼𝐼!"
!":!! !!!"#
!!!":!! 𝑑𝑑𝑑𝑑  

 
Equation 7 

FIG. 8 Daily total energy crossing the technologies during selected winter days (left) (Bianco et al., 2017a) and summer days (right) 
(Bianco et al., 2017b)

 4.1.2 Long-term total energy – E
n,tot 

[Wh/m2/HDD]

Long-term total energy (E
n,tot

 [Wh/m2/HDD], Bianco et al., 2017a) is defined as the total energy over a 

representative period, normalised over the heating (or cooling) degree days of the same period 

(HDD or CDD), extending the total daily energy concept in Section 4.1.1. In this way, when comparing 

more datasets, the influence on the results due to slight differences in the boundary conditions 
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can be minimised. As for the total daily energy, the long-term total energy alone is not sufficient to 

understand the dynamics of the system, and the best comparability is obtained with simultaneous 

measurements. However, this metric provides more concise information of the seasonal performance 

of a system by removing the dependency on some of the boundary conditions of a single day, 

provided that a representative time period is analysed (Fig. 9). In fact, if this metric is able to 

normalise on the HDD or CDD, this does not account for solar radiation and, depending on the type of 

building and internal loads, the baseline temperature used to calculate HDD and CDD might change.  

 

𝐸𝐸!,!"! =
!!",!"!

!"#$ !"#
!!!  

!!"!!!"#
!"#$ !"#
!!!  

   

Equation 8 

FIG. 9 Normalised total energy during a period in winter (left) (Bianco et al., 2017a) and summer (right) (Bianco et al., 2017b)

The considerations that could be drawn by the presented metrics supported the analyses of the 

hourly profiles of various physical properties. Although they provide overall and concise information, 

alone they cannot give sufficient insight on the dynamicity of the system, and a reference is always 

needed, especially for metrics that are not normalised on the boundary conditions.

5 PERFORMANCE METRICS FOR THE ADAPTIWALL PROJECT 

The ADAPTIWALL project sought to develop new adaptive façade prototypes for building renovation 

(www.adaptiwall.eu). One of the prototypes consisted of a lightweight concrete with additives 

for efficient thermal storage and load bearing capacity. Depending on the extrinsic control of 

two hydraulic circuits (one exposed to the internal and one to the external environments), the 

lightweight concrete was charged or discharged (heated up or cooled down). The idea was to control 

the heat transfer to/from the indoor environment by storing heat in the thermal buffer and by 

controlling the flow rate in the two hydraulic circuits. The build-up of a representative construction 

is shown in Fig. 10.
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FIG. 10 Adaptiwall representative construction. Vertical black bars represent the heat flux plate meters integrated in the 
construction.

Four different small-scale ADAPTIWALL prototypes of 1m² were tested at a test site in Algete (Madrid) 

and monitored from October 2015 to June 2016. The lightweight thermal buffer has a thickness of 

16cm and is composed of lightweight concrete with incorporated phase change material (PCM) using 

a vacuum impregnation technique. The prototypes were comprised of a cladding made of 4mm clear 

float glass leaving a 15mm cavity. The total thickness of the panel was 40cm. The characteristics of 

the four prototypes are summarised in Table 1.

PROTOTYPE 1 PROTOTYPE 2 PROTOTYPE 3 PROTOTYPE 4

Concrete type C20/25, Lightweight 
concrete

C20/25, Lightweight 
concrete

C20/25, Lightweight 
concrete

C20/25, very fluid 
concrete (Consistency 
class S5)

Additives Without PCM Without PCM PCM and alumina Micro encapsulated 
PCM and alumina

Solution to avoid over-
heating

Fan Sun screen Sun screen Sun screen

TABLE 1 Characteristics of Adaptivewall prototypes

The performance evaluation of ADAPTIWALL requires adequate metrics able to characterise the 

charging and discharging processes and their efficiencies. After a literature review, the metrics 

defined for ACTRESS by Favoino et al. (2016) have been considered as basis for the data analysis of 

the measurement data of the first test campaign. Metrics have been calculated using the heat fluxes 

defined as reported in Fig. 10. Q*
EXT

 ,Q*
INT

 , Q*
AirGap

 and Q*
INSIDE

 have been measured thanks to four heat 

flux plate meters integrated in the construction.Q*
Buffer outside

 and Q*
Buffer inside

 are equal to respectively 

Q*
EXT

 , Q*
INT

 but with different signs. Q*
OLOOP

 and Q*
ILOOP

 are heat fluxes of water loops in W/m² calculated 

from the difference between the measured inlet and outlet temperatures and from the mass flow 

rate estimation. Mass flow rates in the hydraulic loops are naturally circulated in these first prototype 

configurations. Hence, such flows have been calculated from the inlet-outlet temperature difference 
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and from the calculation of the hydraulic losses along the pipes. Q*
Buffer

 is calculated as in Equation 9. 

Q*
Buffer

 is 0 at each time step if the right term of Equation 9 is lower than 0.

 

 

𝑄𝑄!"##$% = (𝑄𝑄!"!!# + 𝑄𝑄!"# + 𝑄𝑄!"# ) [W/m²]  

 
Equation 9 

 5.1.1 Daily energy e24 for typical days

Daily energy e24 for typical days (e_
24,inside

 is the heat flow through the border layer between the wall 

and the room integrated over 24 hours, as in Equation 10. This is analogous to the previous presented 

metric E
24,tot

. Analogously for ACTRESS and SMARTGlass project, the integration start and end points 

need to be carefully selected, taking into account solar radiation, and charging and discharging 

processes. Moreover, the integrated daily energy can also be done for the other layers, giving useful 

information for the construction optimisation (Fig. 11 and 12 for Prototype 1 and 3, respectively).

 

 

𝑒𝑒!",!"#!$! = 𝑄𝑄!"#!$%
!!" !!!"#
!!" 𝑑𝑑𝑑𝑑		

 
Equation 10 

FIG. 11 e24 metric for Adaptiwall prototype 1 FIG. 12 e24 metric for Adaptiwall prototype 3
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 5.1.2 Usable heat efficiency ŋ
usable

 

Usable heat efficiency (ŋ
usable

) indicates how much heat is discharged to the inside of the room 

compared to the charged heat inside the buffer over a 24 hour period, similarly to the definition in 

(5). The discharge period is defined as the period when the ILOOP of the switchable insulation is 

open. Fig. 13 shows the cumulated distribution function of ŋ
usable

. The values have a rather linear 

distribution and usually range between about 0.1 and 0.4 and they do not highlight any relevant 

improvements due to the use of PCM (prototypes 3 and 4). Prototype 4 has the most different 

behaviour. The reason for this is that PCM is integrated in the lightweight concrete with an 

aluminium casing (6.5% of total concrete weight). As a consequence, no mixing between concrete and 

PCM occurs. Hence, PCM activation happens with a time shift compared to the other prototype with 

impregnated lightweight aggregates directly in the concrete. Nevertheless, the best performance is 

reached by Prototype 4 with the maximum value around 0.42.
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Equation 11

FIG. 13 ηusable cumulative frequency distribution for Adaptiwall 
prototypes

FIG. 14 ηusable cumulative frequency distribution for Adaptiwall 
prototypes

 5.1.3 Total system heat efficiency ŋ
total

Total system heat efficiency (ŋ
total

) expresses the overall efficiency of the system (Equation 6.1). It is 

the ratio of the heat supplied to the room by the heat charged into the buffer. Differently from ŋ
usable

, 

in this case the heat from the internal loop is integrated over 24 hours as the denominator, similarly 

to the definition in (6). Having a higher range of values compared to ŋ
usable

 highlights the impact of 

the high thermal inertia. In other words, the internal loop also keeps distributing heat towards the 

indoor once the water flow stops. In Fig. 14, the same trend of Prototype 4 as for ŋ
usable

 is observed 

(see explanation in the previous lines).
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Equation 12 

The values of ŋ
usable

 and ŋ
total

 are rather low, although comparable with the results from the ACTRESS 

prototype. In the case of ŋ
usable

, one reason could be that after the discharge period, as it was defined, 

the internal radiator is still warm and is further transmitting heat to the inside. Therefore, the 

way this parameter is defined, i.e. starting and ending time of the integration of the heat fluxes, 

needs to be carefully considered, and needs to be adapted to the dynamics of the system. Another 

relevant aspect to be more carefully considered is the effect of longterm accumulation of heat in 

the big thermal mass of the storage and of course the uncertainty of the mass flow in the inner 

and outer water loops. 

6 PERFORMANCE METRICS FOR THE ACTIVE INSULATION PROJECT

Active Insulation is a dynamic insulation system that can either block or stimulate heat exchange 

between inside and outside (Koenders, Loonen, & Hensen, 2018). The system uses a structure of 

air ducts on the front and back sides of the insulation panel in combination with two low-voltage 

fans to actuate an air flow. The system is sealed with aluminium foil on both sides to create a 

closed system. When AIS is in the off-state (i.e. the fans are off), it acts as a regular insulation 

panel because the stagnant air contributes to achieving a high thermal resistance. However, when 

the fans are switched on, the insulation layer gets bypassed, thereby promoting heat exchange 

between inside and outside. Active Insulation can be used to provide passive cooling during cool 

summer nights, however, in this article the emphasis is on its potential to transfer solar heat gains 

during sunny winter days.

Next to measuring the system’s U-value in the on and off state, the system can also be characterised 

by determining its efficiency in gaining heat from solar radiation. Detailed information about the 

heat fluxes throughout the whole structure are needed to determine this efficiency. To reduce the 

influence of any other parameters, an adapted TMY weather file for Amsterdam is used for this 

simulation-based characterisation. The outside air temperature has a fixed value to exclude influence 

of a fluctuating temperature on the heat transfer in the structure. Several fixed temperatures are 

studied, to determine the effect of outside temperature on efficiency. A typical sunny day was chosen 

to determine the efficiency of Active Insulation. 

To determine the efficiency of the system, four daily heat flows through the structure are analysed: 

the heat flow at the outer surface (Q
outside surface,daily

), the heat flow at the interface where the Active 

Insulation extracts the heat from the outer layer (Q
AI,outside,daily

), the heat flow at the interface where 

the Active Insulation transfers the heat to the inner layer (Q
AI,inside,daily

), and the heat flow at the inner 

surface (Q
inside surface,daily

). Several efficiencies of the structure are calculated. 
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 6.1 SOLAR HEAT GAIN EFFICIENCY, ŋ
solar gain

 

Solar heat gain efficiency (ŋ
solar gain

) measures the efficiency between the absorbed solar radiation and 

the extracted heat. It can be determined by dividing the daily heat gains at the outer surface by the 

daily heat extraction of Active Insulation at the outer surface:

 

 

𝜂𝜂!"#$% !"#$ =
!!",!"!"#$%,!"#$% 

!!"#$%&' !"#$%&',!"#$%
∗ 100%   

Equation 13

 6.2 THE SYSTEM EFFICIENCY, ŋ
system

 

The system efficiency (ŋ
system

) quantifies the efficiency over the heat transferred by air in the Active 

Insulation system. It can be determined by dividing the daily heat extraction flux of Active Insulation 

at the outer surface by the daily heat gain flux of Active Insulation at the inner surface:
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∗ 100%   

Equation 14

 6.3 OVERALL EFFICIENCY, ŋ
overall

 

Overall efficiency (ŋ
overall

) measures the efficiency between the heat absorbed at the outer surface and 

what is actually transferred to the inside. It can be determined by dividing the daily heat flux at the 

outer surface by the daily heat flux at the inner surface: 

 

𝜂𝜂!"#$%&& =
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∗ 100%   

Equation 15
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Fig. 15 is a graphical representation of the heat flows and efficiencies described. 

FIG. 15 Active Insulation - overview of heat flows and efficiencies

For this specific case, the results from the simulation are shown in Table 2, expressed in daily heat 

flow values into the zone. For comparative reasons, the analysis was carried out for cases in which 

Active Insulation is switched on during the day and for cases in which it is not used. Results indicate 

a significant increase in heat transferred to the inside when the Active Insulation system is activated.

JUNE 5, AMSTERDAM

[Wh/m² daily] [Wh/m² daily] [Wh/m² daily] [Wh/m² daily]

0°C Active Ins.  OFF 2749.4 0.0 0.0 29.0

Active Ins.  ON 2749.4 303.3 298.9 298.7

5°C Active Ins.  OFF 2749.3 0.0 0.0 35.2

Active Ins.  ON 2749.3 336.3 331.5 335.0

10°C Active Ins.  OFF 2749.3 0.0 0.0 42.1

Active Ins.  ON 2749.3 374.6 369.3 376.5

15°C Active Ins.  OFF 2749.3 0.0 0.0 49.8

Active Ins.  ON 2749.3 419.3 413.4 424.4

20°C Active Ins.  OFF 2749.9 0.0 0.0 59.0

Active Ins.  ON 2749.9 472.3 465.6 483.6

TABLE 2 Active Insulation heat fluxes at different outside temperatures

Using the above mentioned equations, the efficiencies of the system can be determined with the 

given heat flows. For different exterior temperatures, the efficiencies are calculated and shown in 

Table 3. The efficiency of the Active Insulation system is constant at 98.5% for all temperatures. 

However, the solar gain efficiency is increasing with an increasing temperature. This is due to 

the fact that the difference between the surface temperature and the air temperature decreases, 
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resulting in lower convective losses from the surface. The overall efficiency is mainly determined by 

the solar gain efficiency and thus also increases with temperature (Table 3).

OUTDOOR CONDITION

 [%]  [%]  [%]

0°C 11.03 98.56 10.87

5°C 12.23 98.57 12.19

10°C 13.63 98.57 13.70

15°C 15.25 98.58 15.44

20°C 17.17 98.59 17.59

TABLE 3 Efficiencies of the Active Insulation system for different temperatures

The results presented here show that characterising the Active Insulation system with one U-value 

or heat gain efficiency is not possible. The system is dynamic in such a way that its performance is 

influenced by dynamic weather data, but also by design and control parameters. Detailed simulations 

and experiments with prototypes will need to show the actual performance increase of Active 

Insulation for a specific situation. 

7 DISCUSSION AND CONCLUSIONS

Using a combination of experiments and simulations, different indicators for adaptive opaque 

façades were identified. These are summarised in Table 4. These are not in the order of appearance 

in the paper (by project), but are ordered by similarity of characteristics (adaptive façade system 

technology, time frame etc.).

The main difference between the presented metrics, and the standard way to evaluate the 

performance of façades as U-value, G-value, and so on, is that the presented metrics cannot be 

calculated directly from physical characteristics of the materials adopted in a typical façade multi-

layer system / construction, and do not have a general physical meaning. Instead, these metrics are 

derived from either experimental or numerical datasets, with the aim to quantify the performance 

of the system to achieve a certain objective (i.e. pre-heat supply air, reduce heat losses or gains, 

deliver solar radiation through an opaque component to the adjacent room etc.). As a result, most 

of the metrics devised in the presented projects are defined as dimensionless efficiencies or ratios 

over known quantities, which could be calculated based on boundary conditions and other physical 

parameters. It is worth noting the analogy in the definition of these metrics (or efficiency) between 

adaptive façade systems and Heating Ventilation and Air Conditioning (HVAC) systems, as both could 

have different operating modes and controls. 

The main differences between the novel metrics presented are related to the dynamic nature of the 

adaptive system to be characterised. This can be divided into: i) short-term (sub-hourly or hourly 

metrics), related to the performance of fast reactive system, as ventilated cavity, either open or 

closed loop; ii) mid-term (daily metrics), related to the performance of systems that are storing and 

exchanging energy with the indoor environment over a daily cycle (mainly related to solar daily cycle 

and charge and discharge period of solar energy in the thermal mass of the building envelope); iii) 

long-term (monthly and seasonal metrics), adopted to normalise a certain metric over the boundary 
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conditions of a longer period (heating or cooling season). Nevertheless, in order to provide a useful 

insight into the performance of dynamic façade systems and be normalised over a certain range / 

distribution of boundary conditions, short- and mid-term metrics can also be evaluated over a longer 

period, considering their cumulative distribution, as shown in the graphs presented in this paper. 

With the mid-term metrics, particular attention should be paid to the starting and ending time of 

the integration of the heat flows, as these depend on the starting and ending time of the charge / 

discharge cycles and/or of the solar daily cycle (which is seasonally dependent). 

Moreover, for long-term metrics, the definition of the baseline temperature of the HDD and CDD 

could depend on the type of climate (amount of available solar radiation as compared to the seasonal 

temperature variation), type of building (mainly related to the amount of internal thermal mass and 

endogenous occupation loads) and type / dynamics of the HVAC system adopted.

For most of the projects presented, the metrics adopted are derived from experimental data, although 

when physical numerical models of the adaptive façade systems become available, a longer time 

series of data could be generated to calculate the performance metric, or the system could be 

tested in specific boundary conditions in order to understand their influence over the performance 

metric (cf. Active Insulation Project, Section 5). Although due to the complexity of adaptive 

façade components, physical models are not always available (Loonen et al., 2017) or reliable 

(Favoino et al., 2017).

It is unlikely that a single set of metrics can be adopted to satisfy all performance quantification 

needs for any kind of adaptive façade system, due to the intrinsic differences (also in terms of 

dynamics) of different technologies. Therefore, future work is needed to investigate the differences 

and common features between adaptive façade performance metrics, and to cross validate them 

between different projects / technologies and data-sets. The aim of such work would be, rather than 

to develop a specific metric, to develop a methodology to characterise the performance of adaptive 

façade systems. In fact, being able to quantify the performance of an adaptive façade system through 

specific metrics would allow an easier comparison with that of alternative adaptive façade systems 

and with that of traditional static building envelopes. 
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ADAPTIVE FAÇADE 

SYSTEM
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TABLE 4 Adaptive façade system metrics summary
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