PROJECT SUMMARY

Renovation of five apartment buildings built in 1980. Primary energy demand reduced 59%. Complies with Passive House Standard.

SPECIAL FEATURES

- central ventilation system with heat recovery
- 5x30 m² solar collectors for DHW and space heating

ARCHITECT Dipl. Ing. Helmut Kuess

OWNER VOGEWOSI Siedlungsgesellschaft Co-operative

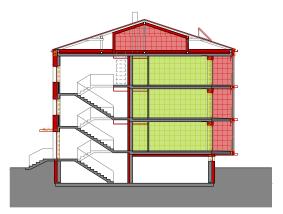
Apartment buildings in Dornbirn AT

IEA – SHC Task 37 Advanced Housing Renovation with Solar & Conservation

After

BACKGROUND

The five, three- and four- storey apartment buildings in Fussenau, Vorarlberg were constructed in 1980. The brick exterior walls were poorly insulated and the original windows still in place. The space heating was supplied by a gas heating.

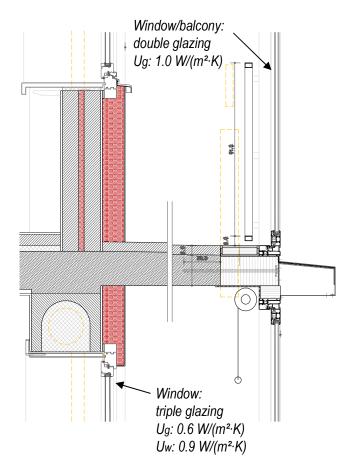

During the renovation of the 54 apartments only components suitable for Passive House Standard were used. The reduction of the thermal bridges, high insulation and improvement of the technical systems efficiency resulted in a reduction of space heating demand from 80 kWh/(m²a) to 16 kWh/(m²a). The renovation, subsidized by the state of Vorarlberg, was finished in May 2008.

OBJECTIVES OF THE RENOVATION

- minimizef heating costs
- · optimize ventilation and building services
- · renovation with least annoyance of residents
- ecological renovation with PH-appropriate building components
- meet Passive House standard

SUMMARY OF THE RENOVATION

- insulation: roof (330 mm), facade (250 mm), basement ceiling (140mm)
- windows meeting PH standard (triple glazed windows; U_w = 0.8 W/m²K)
- glazed balconies
- reduction of thermal bridges
- central ventilation system with heat recovery
- solar collectors for space and water heating
- modernization of the central gas heating



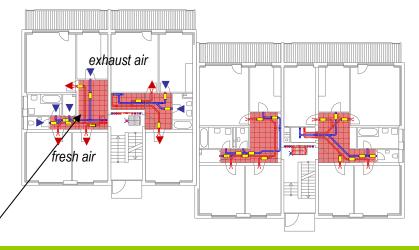
CONSTRUCTION

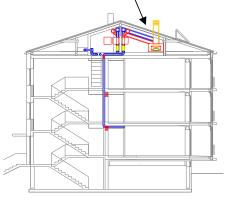
Roof construction	U-value: 0.111	W/(m	n²∙K)
(interior to exterior)			
dry screed		20	mm
expanded polystyrene	EPS	250	mm
dry screed		20	mm
rock wool		80	mm
reinforced concrete		200	mm
surfacer		5	mm
Total		575	mm

Wall construction (interior to exterior)	U-value: 0.1	109 W/(m²·K)
plaster		10 mm
brick		90 mm
polyurethane rigid foar	n sheet	30 mm
high temperature insula	ating brick	90 mm
plaster		10 mm
expanded polystyrene I	EPS	250 mm
plaster		<u>5 mm</u>
Total		485 mm

Ceiling	U-value: 0	0.190 W/(m²⋅K)
(top down)		
floor construction (existing	ng)	100 mm
reinforced concrete (existing)		200 mm
expanded polystyrene EPS		140 mm
plaster		<u>5 mm</u>
Total		445 mm

Window and terrace section


Coring for the ventilation in the stair case



BUILDING SERVICES

Space and domestic water heating is supplied by a central gas heating and solar collectors. Solar heating covers about 60% of domestic hot water and 17% of space heating demand. The heat distribution uses existing piping. A new central ventilation system with heat recovery (efficiency > 85 %) was installed in the attic floor of each building.

book advanted for the second s

Summary of U-values W/(m²·K)

	Before	After
Attic floor	0.4	0.11
Walls	0.3	0.11
Basement ceiling	0.8	0.19
Windows	ca. 2.8	0.90

RENEWABLE ENERGY USE

The 150 m² solar collectors on the south-facing roof achieve an annual solar fraction of 60% for domestic hot water preparation and 17% for space heating.

ENERGY PERFORMANCE

Space + water heating (primary energy)*Before:146 kWh/(m²a)After:59.1 kWh/(m²a)Reduction:59 %

* according to OIB Richtlinie 6

INFORMATION SOURCES

Architekt DI Helmut Kuëss Ehregutaplatz 8 A 6900 Bregenz T +43 5574 42 8 45 www.architektur-kuess.at

Brochure authors

S. Grünewald, S. Rottensteiner

Contact

Thomas Mach thomas.mach@tugraz.at

