Articles

Assessing the impact of climate change on energy retrofit of alpine historic buildings: consequences for the hygrothermal performance
August 2020

Climate change will affect future hygrothermal performance of buildings. This could lead to higher risks regarding energy optimization, thermal comfort and historic building conservation depending on the local climate, building construction and retrofit solutions adopted. This paper explores the risks brought by climate change on a typical residential historic building of South Tyrol. The results obtained show that, although the climate warming will reduce the future heating energy demand, an improvement of buildings' energy performance will still be necessary to increase sustainability and ensure their continued use. Natural ventilation would suffice to prevent overheating in the studied location, but a further analysis is needed for warmer alpine regions. Regarding the moisture-related risks for the historic construction, mould growth should be considered when retrofitting a wooden wall and frost damage should be carefully studied in the case of sandstone walls.

Click here to access the full version. 

Validation of dynamic hygrothermal simulation models for historical buildings: State of the art, research challenges and recommendations
July 2020
Publisher: Building and Environment, Volume 180

The proper simulation of the hygrothermal behaviour of historical buildings is a challenging task with several implications regarding the evaluation of indoor thermal comfort and the suitability of retrofit strategies that comply with the conservation of cultural heritage. An inaccurate simulation may lead to inadequate conclusions, which could result in inappropriate and dangerous actions for the preservation of the heritage buildings.

The present work reviewed the main approaches used by researchers for building performance model validation with special reference to historical buildings based on microclimatic parameters, highlighting the main advantages and drawbacks of the different methods reviewed. Finally, recommendations to properly carry out the model validation based on microclimatic parameters have been provided. The collected information may be useful to different subjects (e.g. designers, energy auditors, researchers, conservators, buildings’ owners and policy makers) and can drive suitable and reliable retrofit and maintenance interventions.

Click here to access the full version.

Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions
February 2020
Publisher: Science Direct, Volume 118

Building dynamic simulation tools, traditionally used to study the hygrothermal performance of new buildings during the preliminary design steps, have been recently adopted also in historical buildings, as a tool to investigate possible strategies for their conservation and the suitability of energy retrofit scenarios, according to the boundary conditions.

However, designers often face with the lack of reliable thermophysical input data for various envelope components as well as with some intrinsic limitations in the simulation models, especially to describe the geometric features and peculiarities of the heritage buildings. This paper attempts to bridge this knowledge gap, providing critical factors and possible solutions to support hygrothermal simulations of historical buildings.

Click here to access the full version

Deep renovation of historic buildings: The IEA-SHC Task 59 path towards the lowest possible energy demand and CO2 emissions
October 2019
Publisher: International Journal of Building Pathology and Adaptation

Improving the energy performance of historic buildings has the potential to reduce carbon emissions while protecting built heritage through its continued use. However, implementing energy retrofits in these buildings faces social, economic, and technical barriers. The purpose of this conceptual paper is to present the approach of IEA-SHC Task 59 to address some of these barriers.

Click here to access the full version.